
Page 1 of 78

Internal distribution
The content of the present document belongs to the NEXI Group. All rights reserved.
Unauthorized distribution of this document outside the NEXI Group is forbidden.

Page 1 of 78

 This content is classified as Internal

[MANDATORY SECURITY] GUIDELINES

GL–016 v.01

SECURE GUIDELINE ANDROID

Identification Code: GL-016 v. 01 | Date of entry into force: 12.06.2023
Document Title:

Internal distributions
The content of this document is Nexi Group property. All rights are reserved.
It is forbidden the disclosure outside the Nexi Group if not authorized.

 Page 2 of 78

 This content is classified as Internal

COVER

Title

Classification

Document code

Approved by

Approval date

Date of entry into force

UPDATES

Version Date Code Updates

1 12-06-2023 GL-016 v. 01 First issue

Mandatory Security Guidelines

GL-016 v. 01

Nexi Group CISO

12-06-2023

12-06-2023

Secure Guideline Android

Identification Code: GL-016 v.01 | Date of entry into force: 12.06.2023
Document Title: Secure Guideline Android

Internal distributions
The content of the present document belongs to the NEXI Group. All rights reserved.
Unauthorized distribution of this document outside the NEXI Group is forbidden.

 Page 3 of 78

 This content is classified as Internal

TABLE OF CONTENTS

1 Introduction .. 5

2 Requirements description .. 6

2.1 Authentication .. 6

2.2 Protection against Reverse Engineering .. 6

2.3 Runtime security checks .. 6

2.4 Sensitive data management ... 6

2.5 User input management .. 7

2.6 Secure communication with the Server .. 7

2.7 IPC mechanisms .. 7

2.8 WebView Management .. 7

2.9 Countermeasures to information disclosure .. 7

3 Requirement specification .. 8

3.1 Requirement specification .. 8

3.2 List of security requirements ... 9

3.3 Requirements description .. 12

3.3.1 Secure authentication using Keystore and Fingerprint .. 12

3.3.2 Secure logout management... 17

3.3.3 Usage of temporary access tokens ... 17

3.3.4 Password security requirements ... 19

3.3.5 PIN Security requirements ... 20

3.3.6 Verify presence of local authentication .. 20

3.3.7 Authenticate using Active Directory ... 21

3.3.8 Protect from User Enumeration ... 22

3.3.9 Protect from bruteforcing ... 23

3.3.10 Authentication with biometric factors ... 24

3.3.11 Code obfuscation ... 26

3.3.12 Encrypt classes with sensitive code .. 29

3.3.13 Limit the usage of whitelist –keep* .. 30

3.3.14 Protection against information disclosure via stacktrace ... 31

3.3.15 Static resources encryption ... 33

3.3.16 Static string encryption .. 34

3.3.17 Prevent tampering ... 36

3.3.18 Whitebox cryptography .. 38

3.3.19 Anti-Root controls .. 39

Identification Code: GL-016 v.01 | Date of entry into force: 12.06.2023
Document Title: Secure Guideline Android

Internal distributions
The content of the present document belongs to the NEXI Group. All rights reserved.
Unauthorized distribution of this document outside the NEXI Group is forbidden.

 Page 4 of 78

 This content is classified as Internal

3.3.20 Anti-Debugging controls .. 41

3.3.21 Anti-Hooking controls ... 43

3.3.22 Encryption of personal data ... 45

3.3.23 Avoid use of private embedded data ... 50

3.3.24 Secure management of files .. 51

3.3.25 Secure implementation of an application PIN Pad .. 51

3.3.26 Memory Wiping .. 52

3.3.27 Input validation ... 53

3.3.28 Usage of prepared statements .. 54

3.3.29 Communication over an encrypted channel .. 55

3.3.30 Implement SSL Certificate Pinning .. 56

3.3.31 IPC interfaces secure management .. 61

3.3.32 Webview secure settings ... 67

3.3.33 Protect against log disclosure .. 71

3.3.34 Protect against screenshot leakage .. 72

3.3.35 Protect against credential theft .. 72

3.3.36 Protect against clipboard data leakage ... 73

4 Checklist for requirement acceptance .. 76

4.1 Checklist ... 76

Identification Code: GL-016 v.01 | Date of entry into force: 12.06.2023
Document Title: Secure Guideline Android

Internal distributions
The content of the present document belongs to the NEXI Group. All rights reserved.
Unauthorized distribution of this document outside the NEXI Group is forbidden.

 Page 5 of 78

 This content is classified as Internal

1 INTRODUCTION

The purpose of this document is to describe the security requirements that should be implemented in order to

develop secure mobile applications for Android.

These requirements originate from the use of standard and internationally recognized methodologies such as

OWASP (The Open Web Application Security Project).

The following references were used during the writing of this document:

• “OWASP Development Guide” – OWASP Foundation

• “OWASP Testing Guide” – OWASP Foundation

• “OWASP Mobile Testing Guide” – OWASP Foundation

• “OWASP Cheat Sheets Series” – OWASP Foundation

• “OWASP Secure Coding Practices” – OWASP Foundation

In particular, the security requirements to be implemented are based on the security tests described in the
OWASP Mobile Testing Guide. Those will also be the reference for the subsequent security assessment phase
of the software produced.

Identification Code: GL-016 v.01 | Date of entry into force: 12.06.2023
Document Title: Secure Guideline Android

Internal distributions
The content of the present document belongs to the NEXI Group. All rights reserved.
Unauthorized distribution of this document outside the NEXI Group is forbidden.

 Page 6 of 78

 This content is classified as Internal

2 REQUIREMENTS DESCRIPTION

Below is a brief description of the requirements categories.

2.1 AUTHENTICATION

In the field of security, authentication is the process designed to verify the digital identity of whoever is
interacting with the application. The purpose of authentication controls on application users is to uniquely
associate the users with their identity on the system, in order that they can access their data. This also means
preventing access to resources by users who do not have access credentials.

2.2 PROTECTION AGAINST REVERSE ENGINEERING

Protection mechanisms against Reverse Engineering are of primary importance since an attacker in
possession of the application, or a device with the installed application, could carry out operations such as
decompilation to reconstruct logic and information useful for further sophisticated attacks.

2.3 RUNTIME SECURITY CHECKS

Runtime security checks are usually performed to identify whether the application to be protected is running
on an insecure environment.

An insecure environment could be used against the application in order to:

• Perform reverse engineering.

• Abusing internal APIs.

• Retrieve sensitive data at runtime.

There are several techniques that can be abused to achieve the aforementioned purposes such as:

• Create a root user who is able to access low-level OS functions (rooted devices).

• Use an Android emulator to install the application, in order to analyze the application from the host

system (emulated devices).

• Debug the application using the device API (application debugging).

• Overwrite applications or system libraries through hooking (hooking of functions and methods).

To identify the presence of each of those techniques, one or more checks must be performed at runtime.

Also, to identify whether the application is in a malicious context, the controls should be applied as much as
possible in conjunction with other controls presented in this document.

All runtime security checks must be considered as complementary to each other, and it is recommended to
apply all of them to achieve a good level of security.

2.4 SENSITIVE DATA MANAGEMENT

Indicates the management of sensitive data used by the application in order to defend the application against
Information Disclosure vulnerabilities.

Identification Code: GL-016 v.01 | Date of entry into force: 12.06.2023
Document Title: Secure Guideline Android

Internal distributions
The content of the present document belongs to the NEXI Group. All rights reserved.
Unauthorized distribution of this document outside the NEXI Group is forbidden.

 Page 7 of 78

 This content is classified as Internal

2.5 USER INPUT MANAGEMENT

Each parameter sent or received by the application could lead to serious vulnerabilities with attacks aimed at
end users or data managed by the application. It is therefore essential to design an application that implements
a correct technique for validating the incoming data, encoding the outgoing data and verifying the correctness
of the variables before interacting with the other layers such as DB, File System, and Operating System.

2.6 SECURE COMMUNICATION WITH THE SERVER

Encryption is the data protection process. The purpose of this process is to make any sensitive data
unintelligible by a malicious user who has managed to intercept them. It is important to make sure that any
sensitive data in transit between client and server is protected by encryption. Furthermore, encryption must be
performed with known standard algorithms.

2.7 IPC MECHANISMS

If a mobile application exposes public interfaces via IPC (Inter Process Communication), it is important to apply
countermeasures to prevent malicious applications installed on the same device from exploiting these
interfaces to make the victim application perform unexpected actions.

2.8 WEBVIEW MANAGEMENT

The WebView components within the applications must be secured in order to limit exposure and entry points
for attackers.

2.9 COUNTERMEASURES TO INFORMATION DISCLOSURE

The management and prevention of Information Disclosure issues for sensitive information in a mobile context
is central to the security of mobile applications. In fact, mobile devices by their nature supports sensitive
operations useful in daily use, such as the possibility to take screenshots of the application or copy-paste
Clipboards. These functionalities could be exploited by an attacker for Information Disclosure actions.

Identification Code: GL-016 v.01 | Date of entry into force: 12.06.2023
Document Title: Secure Guideline Android

Internal distributions
The content of the present document belongs to the NEXI Group. All rights reserved.
Unauthorized distribution of this document outside the NEXI Group is forbidden.

 Page 8 of 78

 This content is classified as Internal

3 REQUIREMENT SPECIFICATION

3.1 REQUIREMENT SPECIFICATION

For each requirement stated during the analysis activity, the following aspects were evaluated:

• Difficulty of exploitation by an attacker.

• Technological impact (non-business) in the event that the vulnerability is exploited by an attacker.

• Difficulty of resolution by applying the requirement requested by the customer.

• Priority of intervention in the introduction of the required safety requirement.

Based on the previous aspects, the risk in the event of a hypothetical vulnerability present in the system was
taken into account for each requirement. This risk is given by the product of the probability of the occurrence
of an attack due to the vulnerability and the technological impact from the exploitation of this activity.

The image below shows the risk calculation matrix:

Therefore, the proposed priority of intervention takes into account the risk value in case of vulnerabilities
present in the system, due to the failure to adopt the required security requirements and the difficulty in
satisfying these requirements, which is measured as the effort by the customer in applying all the
countermeasures described within the proposed security requirements.

The table below shows the rules for using the terms used associated with the applicable priority values, to
formalize the terminology within the security requirements:

Identification Code: GL-016 v.01 | Date of entry into force: 12.06.2023
Document Title: Secure Guideline Android

Internal distributions
The content of the present document belongs to the NEXI Group. All rights reserved.
Unauthorized distribution of this document outside the NEXI Group is forbidden.

 Page 9 of 78

 This content is classified as Internal

Term Category Action

Is necessary

Is mandatory
High/Medium Mandatory

Is strongly suggested

Is important to consider
Medium

Not mandatory but it is necessary to
assess the risks in case of non-
implementation

Is suggested

It should be considered
Low

Implementation is not necessary except in
situations of particularly stringent safety
requirements

The terms: "It is strongly recommended / It is important to consider", indicate that the implementation choice
is inherent to business aspects and internal risk analysis that a generic document such as this one cannot
consider; therefore, the final implementation choice is left to the customer.

Finally, since the guidelines are a document that identifies and categorizes risk aspects without contextualizing
specific applications, the end user can justify the failure to implement a specific control by taking the risk of
this choice.

3.2 LIST OF SECURITY REQUIREMENTS

Code Category Name Priority

RU1 3.3.1 Authentication
Secure authentication using Keystore and
Fingerprint

High

RU2 3.3.2 Authentication Secure logout management Medium

RU3 3.3.3 Authentication Usage of temporary access tokens High

RU4 3.3.4 Authentication Password security requirements High

RU5 3.3.5 Authentication PIN Security requirements High

RU6 3.3.6 Authentication Verify presence of local authentication Medium

RU7 3.3.7 Authentication Authenticate using Active Directory Low

RU8 3.3.8 Authentication Protect from User Enumeration Medium

RU9 3.3.9 Authentication Protect from bruteforcing Medium

RU10 3.3.10 Authentication Authentication with biometric factors High

RU11 3.3.11
Reverse

Engineering
Protection

Code obfuscation High

Identification Code: GL-016 v.01 | Date of entry into force: 12.06.2023
Document Title: Secure Guideline Android

Internal distributions
The content of the present document belongs to the NEXI Group. All rights reserved.
Unauthorized distribution of this document outside the NEXI Group is forbidden.

 Page 10 of 78

 This content is classified as Internal

RU12 3.3.12
Reverse

Engineering
Protection

Encrypt classes with sensitive code High

RU13 3.3.13
Reverse

Engineering
Protection

Limit the usage of whitelist –keep* Medium

RU14 3.3.14
Reverse

Engineering
Protection

Protection against information disclosure via
stacktrace

Medium

RU15 3.3.15
Reverse

Engineering
Protection

Static resources encryption Medium

RU16 3.3.16
Reverse

Engineering
Protection

Static string encryption Medium

RU17 3.3.17
Reverse

Engineering
Protection

Prevent tampering Medium

RU18 3.3.18
Reverse

Engineering
Protection

Whitebox cryptography Low

RU19 3.3.19
Security checks at

Runtime
Anti-Root controls Medium

RU20 3.3.20
Security checks at

Runtime
Anti-Debugging controls Medium

RU21 3.3.21
Security checks at

Runtime
Anti-Hooking controls Medium

RU22 3.3.22
Sensitive Data
Management

Encryption of personal data High

RU23 3.3.23
Sensitive Data
Management

Avoid use of private embedded data Medium

RU24 3.3.24
Sensitive Data
Management

Secure management of files Medium

RU25 3.3.25
User input

management
Secure implementation of an application PIN Pad Medium

RU26 3.3.26
User input

management
Memory Wiping Medium

Identification Code: GL-016 v.01 | Date of entry into force: 12.06.2023
Document Title: Secure Guideline Android

Internal distributions
The content of the present document belongs to the NEXI Group. All rights reserved.
Unauthorized distribution of this document outside the NEXI Group is forbidden.

 Page 11 of 78

 This content is classified as Internal

RU27 3.3.27
User input

management
Input validation High

RU28 3.3.28
User input

management
Usage of prepared statements High

RU29 3.3.29
Secure

communication with
the Server

Communication over an encrypted channel High

RU30 3.3.30
Secure

communication with
the Server

Implement SSL Certificate Pinning High

RU31 3.3.31 IPC mechanisms IPC interfaces secure management Low

RU32 3.3.32
WebView

management
Webview secure settings High

RU33 3.3.33
Countermeasures to

Information
Disclosure

Protect against log disclosure High

RU34 3.3.34
Countermeasures to

Information
Disclosure

Protect against screenshot leakage Low

RU35 3.3.35
Countermeasures to

Information
Disclosure

Protect against credential theft Low

RU36 3.3.36
Countermeasures to

Information
Disclosure

Protect against clipboard data leakage Low

Identification Code: GL-016 v.01 | Date of entry into force: 12.06.2023
Document Title: Secure Guideline Android

Internal distributions
The content of the present document belongs to the NEXI Group. All rights reserved.
Unauthorized distribution of this document outside the NEXI Group is forbidden.

 Page 12 of 78

 This content is classified as Internal

3.3 REQUIREMENTS DESCRIPTION

Below is a detailed description of the required security requirements listed by application categories.

3.3.1 SECURE AUTHENTICATION USING KEYSTORE AND FINGERPRINT

Requirement ID AUT-001

Priority High

Description Mobile applications usually store authentication data on the device to
authenticate users.

To avoid storing credentials (username and password) on the device, it is
advisable to use a random authentication token received during the login
phase, with a limited duration. This can be used as an authentication
parameter when communicating with remote APIs.

The token must be stored on the device using cryptographic algorithms to
avoid confidentiality issues.

Below are guidelines for client-side implementation of a secure authentication
mechanism.

Android Android KeyStore

Android provides KeyStore APIs for secure storage of encryption keys, which
can be used to encrypt authentication data.

Refer to paragraph 3.3.22, which deals with these topics such as the
generation of symmetric keys and the storage of data in encrypted form.

Fingerprint

If it is necessary to unlock an encryption key via fingerprint authentication, it
is possible to enable this functionality from API 23 (Android 6.0) on supported
devices, i.e. devices that meet all of the following requirements:

• They have the appropriate fingerprint sensor.

• They have at least PIN unlock enabled.

• They have at least one registered fingerprint.

This function can be used to decrypt and read authentication data stored on
the device.

Fingerprint validation can be considered a substitute for unlocking the screen
via PIN and offers the possibility of obtaining clear access to a value stored
in the Android KeyStore with which authentication data can be encrypted.

To use the fingerprint authentication feature, it is necessary to ask for the
right permissions in AndroidManifest.xml:

<?xml version="1.0" encoding="utf-8"?>

Identification Code: GL-016 v.01 | Date of entry into force: 12.06.2023
Document Title: Secure Guideline Android

Internal distributions
The content of the present document belongs to the NEXI Group. All rights reserved.
Unauthorized distribution of this document outside the NEXI Group is forbidden.

 Page 13 of 78

 This content is classified as Internal

<manifest xmlns:android="http://schemas.android.com/apk/res/android"
 package="com.test.minded">

 <uses-permission
 android:name="android.permission.USE_FINGERPRINT" />
 <uses-permission
 android:name="android.permission.USE_BIOMETRIC" />
[. . .]

The next step will be to create a class to handle fingerprint authentication by
extending FingerprintManager.AuthenticationCallback.

As shown below, the startAuth method checks for the presence of fingerprint
access control and then calls manager.authenticate to request authentication
of a cryptographic object.

public class FingerprintHandler extends
FingerprintManager.AuthenticationCallback {

 private CancellationSignal cancellationSignal;
 private Context appContext;

 public FingerprintHandler(Context context) {
 appContext = context;
 }

 public void startAuth(FingerprintManager manager,
 FingerprintManager.CryptoObject cryptoObject) {
 cancellationSignal = new CancellationSignal();

 if (ActivityCompat.checkSelfPermission(appContext,
 Manifest.permission.USE_FINGERPRINT) !=
 PackageManager.PERMISSION_GRANTED) {
 return;
 }
 manager.authenticate(cryptoObject, cancellationSignal, 0, this, null);
 }

 @Override
 public void onAuthenticationError(int errMsgId, CharSequence errString)
{
 Toast.makeText(appContext, "Authentication error\n" + errString,
 Toast.LENGTH_LONG).show();
 }

 @Override
 public void onAuthenticationHelp(int helpMsgId, CharSequence
helpString) {
 Toast.makeText(appContext, "Authentication help\n" + helpString,
 Toast.LENGTH_LONG).show();
 }

Identification Code: GL-016 v.01 | Date of entry into force: 12.06.2023
Document Title: Secure Guideline Android

Internal distributions
The content of the present document belongs to the NEXI Group. All rights reserved.
Unauthorized distribution of this document outside the NEXI Group is forbidden.

 Page 14 of 78

 This content is classified as Internal

 @Override
 public void onAuthenticationFailed() {
 Toast.makeText(appContext, "Authentication failed.",
Toast.LENGTH_LONG).show();
 }

 @Override
 public void
onAuthenticationSucceeded(FingerprintManager.AuthenticationResult
result) {
 Toast.makeText(appContext, "Authentication succeeded.",
Toast.LENGTH_LONG).show();
 }

}

Fingerprint authentication involves creating an encryption key in the
KeyStore, which will be unlocked if fingerprint authentication is successful.

The following class shows an example of an Activity that verifies the
prerequisites for implementing fingerprint authentication; it is obtained by
calling isKeyguardSecure, checkSelfPermission, hasEnrolledFingerprints
which respectively check:

• If the user has set an unlock PIN,

• Whether the application has permission to use the fingerprint

• If the user has registered at least one fingerprint.

Once the prerequisites have been verified, the encryption key is generated
via generateKey, then the Cipher is initialized via cipherInit.

Note that the setUserAuthenticationRequired(true) method configures the
key so that the user must authorize through fingerprint any access to the key.

The authentication process, and therefore the unlocking of the key present in
the KeyStore, takes place by invoking startAuth.

public class FingerprintDemoActivity extends AppCompatActivity {

 private static final String KEY_NAME = "example_key";
 private FingerprintManager fingerprintManager;
 private KeyguardManager keyguardManager;
 private KeyStore keyStore;
 private KeyGenerator keyGenerator;
 private Cipher cipher;
 private FingerprintManager.CryptoObject cryptoObject;

 @Override
 protected void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);
 setContentView(R.layout.activity_fingerprint_demo);

 keyguardManager = (KeyguardManager)
getSystemService(KEYGUARD_SERVICE);

Identification Code: GL-016 v.01 | Date of entry into force: 12.06.2023
Document Title: Secure Guideline Android

Internal distributions
The content of the present document belongs to the NEXI Group. All rights reserved.
Unauthorized distribution of this document outside the NEXI Group is forbidden.

 Page 15 of 78

 This content is classified as Internal

 fingerprintManager = (FingerprintManager)
getSystemService(FINGERPRINT_SERVICE);

 if (!keyguardManager.isKeyguardSecure()) {
 Toast.makeText(this, "Lock screen security not enabled in
Settings",
 Toast.LENGTH_LONG).show();
 return;
 }

 if (ActivityCompat.checkSelfPermission(this,
 Manifest.permission.USE_FINGERPRINT) !=
 PackageManager.PERMISSION_GRANTED) {
 Toast.makeText(this, "Fingerprint authentication permission not
enabled",
 Toast.LENGTH_LONG).show();
 return;
 }

 if (!fingerprintManager.hasEnrolledFingerprints()) {
 //In case there are no registered fingerprints.
 Toast.makeText(this, "Register at least one fingerprint in Settings",
 Toast.LENGTH_LONG).show();
 return;
 }

 generateKey();
 if (cipherInit()) {
 cryptoObject = new FingerprintManager.CryptoObject(cipher);
 FingerprintHandler helper = new FingerprintHandler(this);
 helper.startAuth(fingerprintManager, cryptoObject);
 }
 }

 protected void generateKey() {
 try {
 keyStore = KeyStore.getInstance("AndroidKeyStore");
 } catch (Exception e) {
 e.printStackTrace();
 }

 try {
 keyGenerator =
KeyGenerator.getInstance(KeyProperties.KEY_ALGORITHM_AES,
 "AndroidKeyStore");
 } catch (NoSuchAlgorithmException | NoSuchProviderException e) {
 throw new RuntimeException("Failed to get KeyGenerator
instance", e);
 }

 try {
 keyStore.load(null);
 keyGenerator.init(new
KeyGenParameterSpec.Builder(KEY_NAME,

Identification Code: GL-016 v.01 | Date of entry into force: 12.06.2023
Document Title: Secure Guideline Android

Internal distributions
The content of the present document belongs to the NEXI Group. All rights reserved.
Unauthorized distribution of this document outside the NEXI Group is forbidden.

 Page 16 of 78

 This content is classified as Internal

 KeyProperties.PURPOSE_ENCRYPT
|KeyProperties.PURPOSE_DECRYPT)
 .setBlockModes(KeyProperties.BLOCK_MODE_CBC)
 .setUserAuthenticationRequired(true)

.setEncryptionPaddings(KeyProperties.ENCRYPTION_PADDING_PKCS7)
 .build());
 keyGenerator.generateKey();
 } catch (NoSuchAlgorithmException |
InvalidAlgorithmParameterException
 | CertificateException | IOException e) {
 throw new RuntimeException(e);
 }
 }

 public boolean cipherInit() {
 try {
 cipher = Cipher.getInstance(
 KeyProperties.KEY_ALGORITHM_AES + "/"
 + KeyProperties.BLOCK_MODE_CBC + "/"
 + KeyProperties.ENCRYPTION_PADDING_PKCS7);
 } catch (NoSuchAlgorithmException | NoSuchPaddingException e) {
 throw new RuntimeException("Failed to get Cipher", e);
 }

 try {
 keyStore.load(null);
 SecretKey key = (SecretKey) keyStore.getKey(KEY_NAME, null);
 cipher.init(Cipher.ENCRYPT_MODE, key);
 return true;
 } catch (KeyPermanentlyInvalidatedException e) {
 return false;
 } catch (KeyStoreException | CertificateException
 | UnrecoverableKeyException | IOException
 | NoSuchAlgorithmException | InvalidKeyException e) {
 throw new RuntimeException("Failed to init Cipher", e);
 }
 }

}

It is also possible to have more complete examples of authentication via
biometrics in paragraph 3.3.10.

References

• https://developer.android.com/about/versions/marshmallow/android

-6.0.html#fingerprint-authentication

• http://www.techotopia.com/index.php/An_Android_Fingerprint_Auth

entication_Tutorial

• https://github.com/doridori/Android-Security-

Reference/blob/master/framework/fingerprint.md

Identification Code: GL-016 v.01 | Date of entry into force: 12.06.2023
Document Title: Secure Guideline Android

Internal distributions
The content of the present document belongs to the NEXI Group. All rights reserved.
Unauthorized distribution of this document outside the NEXI Group is forbidden.

 Page 17 of 78

 This content is classified as Internal

3.3.2 SECURE LOGOUT MANAGEMENT

Requirement ID AUT-002

Priority Medium

Description Whenever a login functionality is present in the application, the logout feature
must be present as well.

In case the application uses a cookie-based session mechanism, it is
necessary to make sure that, during the logout, the application invalidates
the server-side session and deletes any cookie and/or client-side session
data.

If a persistent client-side authentication token is used, it is recommended to
remove it in case of logout and to notify the backend that the token has to be
invalidated.

Android It is always mandatory to invoke the remote logout API in case of explicit
logout and to set a session timeout if authentication cookies are used.

In case of WebView, it is advisable to use the removeAllCookie method
provided by the CookieManager class in order to delete client-side cookies:

CookieManager.getInstance().removeAllCookies(null);

It is also necessary to evaluate the use of clearHistory, clearFormData and
clearCache methods that WebView class makes available to remove any
data entered during the work session.

webView.clearCache(true);
webView.clearHistory();
webView.clearFormData();

References
• https://developer.android.com/reference/android/webkit/CookieMan

ager.html

3.3.3 USAGE OF TEMPORARY ACCESS TOKENS

Requirement ID AUT-003

Identification Code: GL-016 v.01 | Date of entry into force: 12.06.2023
Document Title: Secure Guideline Android

Internal distributions
The content of the present document belongs to the NEXI Group. All rights reserved.
Unauthorized distribution of this document outside the NEXI Group is forbidden.

 Page 18 of 78

 This content is classified as Internal

Priority High

Description An Access Token is an authentication parameter used by accessing an API
that requires authentication.

The purpose of a temporary token is to provided authentication without
sending credentials each time the application needs to communicate with
remote API services.

Usually, it is included in the HTTP request header Authentication.

Temporary tokens can be used in different contexts, the following list of best
practices refers to the implementation of a client-server API communication:

• Set a token expiration. It's suggested a 10 minutes expiration time;

when the expiration is triggered, every API call should be refreshed

and the old token invalidated.

• Use a minimum token length of 2048 bytes.

• The token value should be generated using cryptographically

secure random algorithms, in order to be unguessable and

unpredictable.

• It must be uniquely associated with the device and revocable by the

user through the web application.

If the session token is issued as a cookie value, it must be protected by
applying the HttpOnly and Secure attributes.

The Secure attribute instructs the User Agent not to send the cookie through
the insecure HTTP protocol to prevent the risk of session theft via network
sniffing, while the HttpOnly attribute prevents access to the JavaScript code
executed by the user agent.

The extension of cookie protection also in the mobile context is justified by

two considerations:

• Applications can implement hybrid solutions that use browser

instances, as such they are exposed to typical attacks from the web

world (e.g., XSS);

• The mobile application could use the same authentication endpoint

used by the web application;

References
• https://tools.ietf.org/html/draft-ietf-oauth-v2-31#section-10.3

• https://tools.ietf.org/html/rfc7519

• https://www.oauth.com/oauth2-servers/access-tokens/access-

token-lifetime/

• https://docs.aws.amazon.com/STS/latest/APIReference/API_GetSe

ssionToken.html

Identification Code: GL-016 v.01 | Date of entry into force: 12.06.2023
Document Title: Secure Guideline Android

Internal distributions
The content of the present document belongs to the NEXI Group. All rights reserved.
Unauthorized distribution of this document outside the NEXI Group is forbidden.

 Page 19 of 78

 This content is classified as Internal

3.3.4 PASSWORD SECURITY REQUIREMENTS

Requirement ID AUT-004

Priority High

Description The password strength depends on the complexity of the password itself
given by the following properties:

• Predictability

• Length

• Entropy

A good password policy that requires good constraints on these properties
will strongly limit brute force attacks.

A brute force attack is a technique that can be used with the aim to guess the
correct value of a password by enumerating all possible values or using a
dictionary of possible candidates for the searched solutions (e.g. a password
value), usually these kind of attacks are automated using software tools.

In order to avoid bruteforcing, it is necessary to implement a password policy
mechanism to guarantee the complexity of the password chosen by the
users.

In particular, the password policy mechanism should evaluate the following
factors:

• The password length, characters complexity (upper and lowercase).

• The entropy of the password characters.

• The password expiration date.

Regarding the best practices for a correct password validation refer to STD-

006 Group Identity and Access Management Standard.

References
• https://madiba.encs.concordia.ca/~x_decarn/papers/password-

meters-ndss2014.pdf

• https://owasp.org/www-project-web-security-testing-guide/v42/4-

Web_Application_Security_Testing/03-

Identity_Management_Testing/04-

Testing_for_Account_Enumeration_and_Guessable_User_Account

• https://owasp.org/www-project-web-security-testing-guide/v42/4-

Web_Application_Security_Testing/04-Authentication_Testing/07-

Testing_for_Weak_Password_Policy

Identification Code: GL-016 v.01 | Date of entry into force: 12.06.2023
Document Title: Secure Guideline Android

Internal distributions
The content of the present document belongs to the NEXI Group. All rights reserved.
Unauthorized distribution of this document outside the NEXI Group is forbidden.

 Page 20 of 78

 This content is classified as Internal

3.3.5 PIN SECURITY REQUIREMENTS

Requirement ID AUT-005

Priority High

Description When there are weak requirements for PINs that are used inside the
application, an attacker could be able to guess their value in order to access
sensitive areas.

When a mobile application requires a PIN, it is important to follow a number
of precautions to keep data secrecy and to mitigate sequence number
prediction:

• Adopt a 6-digit minimum customer PIN.

• Avoid consecutive digits (e.g. 123456).

• Avoid more than three equal digits (e.g. 000xxx).

• Unless there is a particular requirement, PIN should never be stored

on the device and the encryption key has to be stored on a different

device.

• Do not allow PINs to be in the clear text anywhere in the network or

system.

• Protect customer PINs using end-to-end application layer encryption.

• Differentiate PINs for different channels of different risk levels; advise

customers to use different PINs for different channels.

Furthermore, to avoid brute force attacks it's recommended to set a limit to
the number of attempts of PIN entering.

Finally, the PIN must always be entered via an application PIN PAD as
discussed in paragraph 3.3.25.

References
• https://github.com/OWASP/owasp-

mstg/blob/master/Document/0x04e-Testing-Authentication-and-

Session-Management.md

3.3.6 VERIFY PRESENCE OF LOCAL AUTHENTICATION

Requirement ID AUT-006

Priority Medium

Identification Code: GL-016 v.01 | Date of entry into force: 12.06.2023
Document Title: Secure Guideline Android

Internal distributions
The content of the present document belongs to the NEXI Group. All rights reserved.
Unauthorized distribution of this document outside the NEXI Group is forbidden.

 Page 21 of 78

 This content is classified as Internal

Description If there are no local authentication mechanisms set on the device (such as
biometric authentication or PIN) an attacker could access the device in order
to use the installed applications or access saved data.

It is suggested to make the application check that the user has already set a
local authentication mechanism to unlock and use the device in order to allow
only the device owner to access and use the installed applications.

In this way, even if a mobile app retains the authentication of the user after
closing the app, malicious users that have physical access to the device won’t
be able to unlock it.

It is suggested to check the presence of these local authentication
mechanisms via the APIs offered by the platform.

Android Starting with Android 6 (SDK 23), there is a method to check if the device is
protected by a pin, password, etc, as shown in the example below:

KeyguardManager manager = (KeyguardManager)
context.getSystemService(Context.KEYGUARD_SERVICE);
if(manager.isDeviceSecure()){
 // device is secure
}else{
 // device is not secure
}

References
• https://developer.android.com/reference/android/app/KeyguardMan

ager#isDeviceSecure()

• https://github.com/OWASP/owasp-

mstg/blob/master/Document/0x04e-Testing-Authentication-and-

Session-Management.md

3.3.7 AUTHENTICATE USING ACTIVE DIRECTORY

Requirement ID AUT-007

Priority Low

Description For mobile enterprise applications that should be used by the company’s
employees it is suggested to use a centralized authentication via Active
Directory in order to avoid ad hoc credentials that could be difficult to revoke.

If the mobile application uses custom authentication mechanisms based on
ad hoc credentials, in case of necessity it could be difficult to reset an account

Identification Code: GL-016 v.01 | Date of entry into force: 12.06.2023
Document Title: Secure Guideline Android

Internal distributions
The content of the present document belongs to the NEXI Group. All rights reserved.
Unauthorized distribution of this document outside the NEXI Group is forbidden.

 Page 22 of 78

 This content is classified as Internal

and, in addition, there would be an additional cost in securely managing
another database with all the credentials.

If the application uses Active Directory authentication instead, it is easier to
manage company accounts in order to revoke or upgrade access for the
users of the application.

Android For enterprise applications, if possible, it is suggested to use Active Directory
authentication and make sure that LDAP data are synchronized in order to
be sure that only valid company accounts can access the applications.

References
• https://docs.microsoft.com/it-it/azure/app-service-mobile/app-

service-mobile-android-get-started-users

• https://msdn.microsoft.com/en-us/library/hh871909.aspx

3.3.8 PROTECT FROM USER ENUMERATION

Requirement ID AUT-008

Priority Medium

Description An attacker could be able to identify if a username is valid or not for the
application by trying to interact with the authentication system.

This happens if the application replies in two different ways if a username
exists or not, regardless of the password.

Therefore, an application is affected by this vulnerability if, given a valid
username and a wrong password, the system replies with a message like the
following:

Login failed for User foo: invalid password

Otherwise, it replies with the following message when the user does not exist
on the system:

Login failed for User foo: invalid Account

Android Be sure that the application does not provide too many details during the
authentication phase and always provide the same generic error message.

Also, in case of a non-existing user on platform, always display a generic
error message like the following:

Identification Code: GL-016 v.01 | Date of entry into force: 12.06.2023
Document Title: Secure Guideline Android

Internal distributions
The content of the present document belongs to the NEXI Group. All rights reserved.
Unauthorized distribution of this document outside the NEXI Group is forbidden.

 Page 23 of 78

 This content is classified as Internal

Wrong Credentials

Make sure that the server does not use different response times depending
on whether the user exists or not in authentication process, to prevent an
attacker from inferring through this mechanism, even if unchanged error
message is provided, and to make user enumeration.

Finally, it is worth noting that the login functionality is not the only one that
can be abused to enumerate users of the platform. Another functionality is,
for example, password recovery.

References
• https://owasp.org/www-project-web-security-testing-guide/v42/4-

Web_Application_Security_Testing/03-

Identity_Management_Testing/04-

Testing_for_Account_Enumeration_and_Guessable_User_Account

• https://cheatsheetseries.owasp.org/cheatsheets/Authentication_Ch

eat_Sheet.html#Authentication_and_Error_Messages

3.3.9 PROTECT FROM BRUTEFORCING

Requirement ID AUT-009

Priority Medium

Description

Brute forcing of access credentials consists in trying to guess the password
of a user for which the username is known.

This kind of attack is performed by using automatic tools that, given a
username, try to guess the password making several tries.

A particular case of bruteforcing is the dictionary attack in which the
passwords are retrieved starting from a list of words instead of all possible
sequences of characters.

The second method obviously would allow an attacker to reach the result in
much less time.

The most common protection against these attacks is to implement account
lockout, which prevents any more login attempts for a period after a certain
number of failed logins (for more information refer to STD-006 Group Identity
and Access Management Standard.) The counter of failed logins should be
associated with the account itself, rather than the source IP address, in order
to prevent an attacker making login attempts from a large number of different
IP addresses.

When designing an account lockout system, care must be taken to prevent it
being used to cause a denial of service (DoS) by locking out other users'
accounts. For this reason, rather than implementing a fixed lockout duration

Identification Code: GL-016 v.01 | Date of entry into force: 12.06.2023
Document Title: Secure Guideline Android

Internal distributions
The content of the present document belongs to the NEXI Group. All rights reserved.
Unauthorized distribution of this document outside the NEXI Group is forbidden.

 Page 24 of 78

 This content is classified as Internal

it is suggested to use an exponential lockout, where the lockout duration
starts as a very short period (e.g., one second), but doubles after each failed
login attempt. Adding the use of an effective CAPTCHA can help to prevent
automated login attempts against accounts.

References
• https://owasp.org/www-project-web-security-testing-guide/v42/4-

Web_Application_Security_Testing/04-Authentication_Testing/03-

Testing_for_Weak_Lock_Out_Mechanism

• https://owasp.org/www-project-web-security-testing-guide/v42/4-

Web_Application_Security_Testing/03-

Identity_Management_Testing/02-Test_User_Registration_Process

3.3.10 AUTHENTICATION WITH BIOMETRIC FACTORS

Requirement ID AUT-010

Priority High

Description The usage of biometric authentication in mobile applications it’s often
implemented to facilitate users during the login phase.

After executing the first login using standard credentials (e.g. username and
password) it is possible to configure the application to use biometric access
as primary factor and pin or password as fallback.

In order to allow biometric access, the device must be secured with a pin or
password. For more details, refer to the requirement 3.3.6.

For biometric access to the application to be implemented correctly, a suitably
configured key must be generated within the system Keystore which must be
used to encrypt and decrypt the secret necessary to authenticate the user on
the system, such as a token login or the credentials themselves. Once
encrypted, this secret must be saved and managed securely as described in
paragraph 3.3.22.

In order to properly implement biometric access to the application, it is
necessary to generate a key properly configured inside the system Keystore.
That key must be used to encrypt and decrypt the secret needed to
authenticate the user on the system, such as an access token or the
credentials themselves. Once encrypted, this secret must be saved and
securely managed as described in paragraph 3.3.22.

For further details on the generation of the key in the system Keystore and
for its correct configuration, refer to the paragraph 3.3.1.

Furthermore, starting from Android 11 it is possible to define the minimum
security class required to enable biometric authentication.

Identification Code: GL-016 v.01 | Date of entry into force: 12.06.2023
Document Title: Secure Guideline Android

Internal distributions
The content of the present document belongs to the NEXI Group. All rights reserved.
Unauthorized distribution of this document outside the NEXI Group is forbidden.

 Page 25 of 78

 This content is classified as Internal

Android Below is an example of code that allows access to an application through the
Android BiometricPrompt class.

The example below is valid both for use with the native Android APIs, and
with the Jetpack / AndroidX libraries which will provide backward compatibility
with previous versions of the operating system.

It should be noted that this flow at the end uses the encryption, since at the
first access the biometry is used to encrypt the user credentials just entered.

In the following executions, it will be necessary to use decryption in order to
recover the encrypted credentials and log in to the application.

Key generation:

private fun generateSecretKey(keyGenParameterSpec:
KeyGenParameterSpec) {
 val keyGenerator = KeyGenerator.getInstance(
 KeyProperties.KEY_ALGORITHM_AES, "AndroidKeyStore")
 keyGenerator.init(keyGenParameterSpec)
 keyGenerator.generateKey()
}

private fun getSecretKey(): SecretKey {
 val keyStore = KeyStore.getInstance("AndroidKeyStore")
 keyStore.load(null)
 return keyStore.getKey(KEY_NAME, null) as SecretKey
}

private fun getCipher(): Cipher {
 return Cipher.getInstance(KeyProperties.KEY_ALGORITHM_AES + "/"
 + KeyProperties.BLOCK_MODE_CBC + "/"
 + KeyProperties.ENCRYPTION_PADDING_PKCS7)
}
…
generateSecretKey(KeyGenParameterSpec.Builder(
 KEY_NAME,
 KeyProperties.PURPOSE_ENCRYPT or
KeyProperties.PURPOSE_DECRYPT)
 .setBlockModes(KeyProperties.BLOCK_MODE_CBC)

.setEncryptionPaddings(KeyProperties.ENCRYPTION_PADDING_PKCS7)
 .setUserAuthenticationRequired(true)
 .setInvalidatedByBiometricEnrollment(true)
 .build())
…

Starting the authentication flow with the push of a button:

biometricLoginButton.setOnClickListener {
 val cipher = getCipher()
 val secretKey = getSecretKey()
 cipher.init(Cipher.ENCRYPT_MODE, secretKey)

Identification Code: GL-016 v.01 | Date of entry into force: 12.06.2023
Document Title: Secure Guideline Android

Internal distributions
The content of the present document belongs to the NEXI Group. All rights reserved.
Unauthorized distribution of this document outside the NEXI Group is forbidden.

 Page 26 of 78

 This content is classified as Internal

 promptInfo = BiometricPrompt.PromptInfo.Builder()
 .setTitle("Login tramite accesso biometrico")
 .setSubtitle("Accedi con le tue credenziali biometriche")
 .setAllowedAuthenticators(BIOMETRIC_STRONG or
DEVICE_CREDENTIAL)
 .build()
 biometricPrompt.authenticate(promptInfo,
 BiometricPrompt.CryptoObject(cipher))
}

The operating system will then show a login prompt that will ask the user to
enter the biometric identity (fingerprint, iris, etc.).

Once the authentication is complete, the following method will be invoked by
the operating system. In particular, the result.cryptoObject.cipher parameter
will contain the key that must be used to carry out the operations necessary
to save and retrieve the access credentials:

override fun onAuthenticationSucceeded(
 result: BiometricPrompt.AuthenticationResult) {
 val encryptedInfo: ByteArray = result.cryptoObject.cipher?.doFinal(
 plaintext-string.toByteArray(Charset.defaultCharset())
)
 // Save the credentials or retrieve them in subsequent accesses
}

References
• https://developer.android.com/training/sign-in/biometric-auth

• https://source.android.com/compatibility/android-

cdd#7_3_10_biometric_sensors

• https://www.raywenderlich.com/18782293-android-biometric-api-

getting-started#toc-anchor-003

• https://developer.android.com/codelabs/biometric-login#0

3.3.11 CODE OBFUSCATION

Requirement ID RE-001

Priority High

Description The code obfuscation technique is implemented in ProGuard and improved

in DexGuard.

• https://www.guardsquare.com/blog/dexguard-vs.-proguard

Identification Code: GL-016 v.01 | Date of entry into force: 12.06.2023
Document Title: Secure Guideline Android

Internal distributions
The content of the present document belongs to the NEXI Group. All rights reserved.
Unauthorized distribution of this document outside the NEXI Group is forbidden.

 Page 27 of 78

 This content is classified as Internal

The default configuration dexguard-release.pro already covers all
obfuscation settings to a good extent, with the default obfuscation level set to
low.

In order to have a reasonable level of obfuscation it is important to adopt the
following techniques:

• Perform code obfuscation through code rewrite, accomplished by

adding dead code and increasing code complexity to make

automatic decompilation difficult.

• Renaming of packages, classes and methods using random names

or names with no semantic meaning.

• Automatic transformation of sensitive methods direct call to indirect

call via reflection and encryption of classes and method names

used for reflection transformation.

In particular, the following settings should be considered as important:

-obfuscatecode,[low, medium, high] [class_filter]
Obfuscation is a default option. This directive can be used to provide a
specific obfuscation level on specific classes.
Default: obfuscatecode,low *

-flattenpackagehierarchy [package_name]
Flattens the package hierarchy for the given package_name. Developers
have to pay attention while using this directive and the original code uses
reflection API applied to `package_name`. DexGuard, in that case will not
be able to rewrite the reflected call with the new package name.
-accessthroughreflection[,encryptstrings] class_specification
Forces the rewriting of direct method calls matching class_specification
filter to indirect call via reflection. This settings makes static analisys more
difficult. It's recommended, unless there are particular performance
requirements, to use `encryptstrings`. it encrypts classes and methods
names used in the transformation to reflection call.

Android Obfuscatecode usage

-obfuscatecode [,strength] class_specification

This is the directive used to obfuscate specific methods.

If it is not specified a class or a method, all method and nested classes in the
class will be obfuscated. The default obfuscation strength is Low.

After identifying the directive, Dexguard will rewrite the class and methods
code in order to increase reverse engineering complexity.

Identification Code: GL-016 v.01 | Date of entry into force: 12.06.2023
Document Title: Secure Guideline Android

Internal distributions
The content of the present document belongs to the NEXI Group. All rights reserved.
Unauthorized distribution of this document outside the NEXI Group is forbidden.

 Page 28 of 78

 This content is classified as Internal

WARNING

Since this approach is performed by static code analysis, it works well when

"reflection" is not used.

Flattenpackagehierarchy usage:

Assuming code contains the following classes and packages:

mycompany.myapplication.MyMain
mycompany.myapplication.Foo
mycompany.myapplication.Bar
mycompany.myapplication.extra.FirstExtra
mycompany.myapplication.extra.SecondExtra
mycompany.util.FirstUtil
mycompany.util.SecondUtil

The default package name obfuscation setting will produce the following
result:

mycompany.myapplication.MyMain
mycompany.myapplication.a
mycompany.myapplication.b
mycompany.myapplication.a.a
mycompany.myapplication.a.b
mycompany.a.a
mycompany.a.b

If the following directive is added to the custom configuration:

-flattenpackagehierarchy 'fakepackagename'

The result will be:

mycompany.myapplication.MyMain
mycompany.myapplication.a
mycompany.myapplication.b
fakepackagename.a.a
fakepackagename.a.b
fakepackagename.b.a
fakepackagename.b.b

WARNING:

Identification Code: GL-016 v.01 | Date of entry into force: 12.06.2023
Document Title: Secure Guideline Android

Internal distributions
The content of the present document belongs to the NEXI Group. All rights reserved.
Unauthorized distribution of this document outside the NEXI Group is forbidden.

 Page 29 of 78

 This content is classified as Internal

Since this approach is performed by static code analysis, it works well when
"reflection" is not used.

Accessthroughreflection usage:

With the class and method of the previous example and the following settings:

-accessthroughreflection[,encryptstrings] class

It specifies to substite the direct access of class and members with reflection.

When obfuscation and other renaming directives are applied, names will be
rewritten according to DexGuard internal mapping.

Finally, when developers explicitly use the reflection approach, it is
recommended to use “encryptstrings” directive to obfuscate methods and
class names used as reflection arguments.

3.3.12 ENCRYPT CLASSES WITH SENSITIVE CODE

Requirement ID RE-002

Priority High

Description Class encryption is another technique that can be used to obfuscate code in
order to increase the difficulty for reverse engineering performed through
static code analysis.

We recommend using this directive for classes with highly sensitive content.

-encryptclasses [class_filter]
-encryptclasses class_specification
Specifies that classes whose names either match the given filter or class
specification should be encrypted. When using a class specification,
specified fields and methods are ignored as classes will always be
encrypted as a whole. This makes it more difficult to disassemble or
decompile them. "Obfuscated" would be a better word, since the processed
code necessarily has to be able to reverse the encryption. It therefore
increases the code size and introduces processing overhead at runtime,
whenever the class is loaded or accessed. However, it raises the bar for
any reverse engineering attempts. For example, if you have some sensitive
license checking class, you may want to protect it by encrypting it. Only
applicable when obfuscating.
You can additionally protect encrypted class by obfuscating their code with
obfuscation strength medium or high. This will render the classes unusable
if they are manually extracted from the DEX file. Code obfuscation should

Identification Code: GL-016 v.01 | Date of entry into force: 12.06.2023
Document Title: Secure Guideline Android

Internal distributions
The content of the present document belongs to the NEXI Group. All rights reserved.
Unauthorized distribution of this document outside the NEXI Group is forbidden.

 Page 30 of 78

 This content is classified as Internal

not be applied however on performance-sensitive code that is executed
very frequently (e.g., tight code loops).
Counter-indications: It is not possible to encrypt classes that are explicitly
preserved from obfuscation (in your configuration), extended by non-
encrypted classes, or created by reflection (for instance because they are
referenced from XML files).
Note: When encrypting classes in library projects, the code must set a
temporary directory:
System.setProperty("java.io.tmpdir", getDir("files",
Context.MODE_PRIVATE).getPath());
Caveat: When encrypting classes in library projects, the encrypted classes
must not contain references to classes or class members that are later on
obfuscated in the final application projects. Once encrypted, classes can
no longer be changed, so their references would become invalid. If
encrypted classes do contain references to other non-encrypted classes in
their library projects, these referenced classes and class members must be
preserved from obfuscation in the application projects. If your requirements
allow it, it is easier to encrypt classes when processing the final application.

Performance tip: Every access from an external class to an encrypted class
carries some overhead, due to reflection. If performance is important in this
part of your code, you can reduce the overhead by accessing the class
through an interface that is not encrypted.

Android
The following settings instruct DexGuard to perform the following operations:

• Encrypt the bytecode of “TestLicense”.

• Generate a class that uses “ClassLoader” and calls

“Class.forName” that loads the class at runtime.

-encryptclasses com.application.TestLicense

3.3.13 LIMIT THE USAGE OF WHITELIST –KEEP*

Requirement ID RE-003

Priority Medium

Description Sometimes code obfuscation can result in application runtime errors due to
special implementations such as reflection or RPC or in case DexGuard
performs file deletions or inserts dead code for incorrect automatic
assumptions.

Identification Code: GL-016 v.01 | Date of entry into force: 12.06.2023
Document Title: Secure Guideline Android

Internal distributions
The content of the present document belongs to the NEXI Group. All rights reserved.
Unauthorized distribution of this document outside the NEXI Group is forbidden.

 Page 31 of 78

 This content is classified as Internal

The command that asks DexGuard to not obfuscate specific classes are
identified by the prefix “-keep”.

-keep [,modifier,...] class_specification
Specifies classes and class members (fields and methods) to be preserved
as entry points to your code. For example, in order to keep an application,
you can specify the main class along with its main method. In order to
process a library, you should specify all publicly accessible elements.
-keepclassmembers [,modifier,...] class_specification
Specifies class members to be preserved, if their classes are preserved as
well. For example, you may want to keep all serialization fields and
methods of classes that implement the Serializable interface.
-keepclasseswithmembers [,modifier,...] class_specification
Specifies classes and class members to be preserved, on the condition
that all of the specified class members are present. For example, you may
want to keep all applications that have a main method, without having to
list them explicitly.

Although these directives are very useful for solving post-obfuscation
problems, they must be used with attention as they instruct DexGuard to
explicitly do not obfuscate specific parts of the code.

To analyze and debug such situations it is suggested to use the “printusage”
directive:

-printusage [filename]
Specifies to list dead code of the input class files. The list is printed to the
standard output or to the given file. For example, you can list the unused
code of an application. Only applicable when shrinking.

3.3.14 PROTECTION AGAINST INFORMATION DISCLOSURE VIA STACKTRACE

Requirement ID RE-004

Priority Medium

Description During the application execution errors might be triggered and managed
through software exceptions.

These exceptions contain the stacktrace of the errors, such as:

Caused by: java.lang.ArithmeticException: divide by zero
 at
com.example.stacktraceeample.MainActivity.onCreate(MainActivity.kt:13)
 at android.app.Activity.performCreate(Activity.java:7009)
 at android.app.Activity.performCreate(Activity.java:7000)

Identification Code: GL-016 v.01 | Date of entry into force: 12.06.2023
Document Title: Secure Guideline Android

Internal distributions
The content of the present document belongs to the NEXI Group. All rights reserved.
Unauthorized distribution of this document outside the NEXI Group is forbidden.

 Page 32 of 78

 This content is classified as Internal

 at
android.app.Instrumentation.callActivityOnCreate(Instrumentation.java:121
4)

The stacktrace is an important source of information for developers in order
analyze errors and fix them.

On the other hand, it may contain lines and methods names or filenames, so
it can disclose useful information also to an attacker who want to perform a
reverse engineering analysis.

Code obfuscation allows to minimize the information contained in a
stacktrace.

The settings shown in the following examples are present in the DexGuard
default configuration.

Android To get the stacktrace with obfuscated information, which can be remapped
on the original code, developers can use the following settings:

-printmapping FILEMAPPING.map
saves a map between original names and obfuscated ones

-renamesourcefileattribute SourceFile
resolves the leakage of filename in each .class by overwriting it to a
given string

-keepattributes SourceFile,LineNumberTable
keeps the lineNumber Table to give obfuscated stack traces that can be
mapped back to original code using `retrace` utility and
FILEMAPPING.map file.

These settings keep all source file attributes but replace their values with the
string "SourceFile". Any strings could be used. This string is already present
in all class files, so it doesn't take up any extra space.

It also keeps the line number tables of all methods.

Whenever both of these attributes are present, the Java run-time
environment will include line number information when printing out exception
stacktraces.

The information will only be useful if it can map the obfuscated names back
to their original names, so it saves the mapping to a file “out.map”. The
information can then be used by the ReTrace tool to restore the original stack
trace.

Identification Code: GL-016 v.01 | Date of entry into force: 12.06.2023
Document Title: Secure Guideline Android

Internal distributions
The content of the present document belongs to the NEXI Group. All rights reserved.
Unauthorized distribution of this document outside the NEXI Group is forbidden.

 Page 33 of 78

 This content is classified as Internal

3.3.15 STATIC RESOURCES ENCRYPTION

Requirement ID RE-005

Priority Medium

Description Static resources encryption increases the difficulty for an attacker to find
secrets in decompiled or disassembled code.

For sake of completeness, the correct term of this technique is resources
obfuscation since resources are encrypted at obfuscation time and decrypted
and kept in memory during application execution by internal methods.

DexGuard settings for resources encryption are:

-encryptassetfiles [file_filter]
Specifies the Android asset files that should be encrypted. Asset files are
stored in the assets directory and can contain any data. The obfuscation
step can automatically encrypt them and make sure they are decrypted on
the fly at run-time. In order for this to work, the assets must be loaded
using one of the AssetManager.open methods. Only applicable when
obfuscating Android code.

Note: If the processed application contains at least one call to
AssetManager.open(String) with a non-constant string argument,
DexGuard will encrypt all assets that match the specified file filter. If there
are assets that are loaded via other mechanisms, make sure they do not
match the specified file filter.

-encryptresourcefiles [file_filter]
Specifies to encrypt Android resource files. Resource files are stored in the
res directory and can contain application resources such as layout XML
files. The obfuscation step can automatically encrypt them and make sure
they are decrypted on the fly at run-time. Supported resources: res/layout,
res/menu, and res/xml files. Counter-indication: app widgets can't decrypt
resources. Don't encrypt resource files that are accessed by app widgets.

It is possible to get a list of all the resources encrypted by DexGuard by using
the “-print*” directives.

This directive can be very useful in case of execution issues.

-printclassencryption [filename]
-printstringencryption [filename]
-printassetencryption [filename]
-printresourceencryption [filename]
-printnativelibraryencryption [filename]

Identification Code: GL-016 v.01 | Date of entry into force: 12.06.2023
Document Title: Secure Guideline Android

Internal distributions
The content of the present document belongs to the NEXI Group. All rights reserved.
Unauthorized distribution of this document outside the NEXI Group is forbidden.

 Page 34 of 78

 This content is classified as Internal

Android The following example can be used to encrypt assets.

fun displayOneImage(imageViewbyCode: ImageView) {
 if (imageViewbyCode != null)
 {
 imageViewbyCode.setVisibility(View.GONE)
 }
 imageViewbyCode.setVisibility(View.VISIBLE)
 val assetManager = getAssets()
 try
 {
 val `is` = assetManager.open("img/image1.png")
 val bitmap = BitmapFactory.decodeStream(`is`)
 imageViewbyCode.setImageBitmap(bitmap)
 }
 catch (e: IOException) {
 Log.e(TAG, e.message)
 }
 }

The following setting asks DexGuard to look for the “AssetManager.open”

method call, and only in that case the asset will be encrypted:

-encryptassetfiles assets/img/image1.png

As before, resource encryption, it is automatically performed (without the
requirement of particular code paradigms) as follows:

-encryptresourcefiles res/**/*

WARNING:

Pay attention to the resources used by app widgets, in fact DexGuard is not

able to decrypt these resources at runtime, it is therefore recommended to

use the -keepresources directive for these exceptions.

3.3.16 STATIC STRING ENCRYPTION

Requirement ID RE-006

Priority Medium

Identification Code: GL-016 v.01 | Date of entry into force: 12.06.2023
Document Title: Secure Guideline Android

Internal distributions
The content of the present document belongs to the NEXI Group. All rights reserved.
Unauthorized distribution of this document outside the NEXI Group is forbidden.

 Page 35 of 78

 This content is classified as Internal

Description Static strings encryption increases the difficulty for an attacker to find secrets
in decompiled or disassembled code.

The correct term of this technique is strings obfuscation, since strings are
encrypted at obfuscation time and decrypted and kept in memory during
application execution by methods internal to the application itself.

DexGuard settings for string encryption are:

-encryptstrings [string_filter]
#All strings matching the filter will be encrypted (wildcard * matches all)
-encryptstrings class_specification
all strings in the matching class or classes are encrypted
With specified fields, the matching final String constants are encrypted.
With specified methods, all strings in the matching methods are encrypted.
-encryptresources [name_filter]
Specifies the Android resources to be encrypted. The filter is applied to
strings of the form "type/name", for example "string/apiKey". Currently only
String resources are supported. If a resource is also excluded from
obfuscation using -keepresources, this takes precendence over encryption.
Counter-indication: resource Strings referenced from other XML files can't
be encrypted.

Besides performing encryption on particular static secrets, it's suggested, in
case of access through reflection, to do the same with methods and classes
names to make more difficult a reverse engineering analysis.

WARNING:

To increase decryption performance in methods and classes where
performance is a mandatory requirement, it's suggested to define strings as:

private static String

This way decryption takes place only once the class it belongs is initialized.

Be careful to not declare it as final because the compiler could change it to
inline in the belonging class and perform decryption every time an object is
created.

WARNING:

Please note that DexGuard does not support encryption of static strings in
the "Interface classes". Though it supports "final strings" in the "Interface
classes”.

Below few drawbacks related to this feature:

• It increments the software size.

Identification Code: GL-016 v.01 | Date of entry into force: 12.06.2023
Document Title: Secure Guideline Android

Internal distributions
The content of the present document belongs to the NEXI Group. All rights reserved.
Unauthorized distribution of this document outside the NEXI Group is forbidden.

 Page 36 of 78

 This content is classified as Internal

• It introduces an overhead due to runtime decryption.

Android
The following directive obfuscate “clicker.jar” into “clicker_ob.jar” and

encrypts all strings in all classes.

-injars Compiled/clicker.jar
-outjars Compiled/clicker_ob.jar
-libraryjars <java.home>/lib/rt.jar
-printmapping clicker.map

-keep public class com.amazon.sample.buttonclicker.Clicker {
 public static void main(java.lang.String[]);
}
-renamesourcefileattribute SourceFile
-keepattributes SourceFile,LineNumberTable
-encryptstrings *

3.3.17 PREVENT TAMPERING

Requirement ID RE-007

Priority Medium

Description It is possible to perform a tamper detection in order to check if the application
apk has been changed.

DexGuard can perform this check by verifying the integrity of the apk and the
signing certificate.

To implement this control, it is possible to call the following APIs:

com.guardsquare.dexguard.runtime.detector.TamperDetector.checkApk(co
ntext,OK)
Check if the apk has been modified
com.guardsquare.dexguard.runtime.detector.CertificateChecker.checkCerti
ficate(context, OK)
Check if the application has been signed with the compilation certificate.

Since the implementation is very specific to the application that we need to
protect, it is necessary to obfuscate or encrypt the methods that perform
these checks, otherwise they could be easily spotted by an attacker and
removed.

In addition, when a tampering attempt is detected, it is suggested to make
the application work with limited capabilities and to not inform the user with

Identification Code: GL-016 v.01 | Date of entry into force: 12.06.2023
Document Title: Secure Guideline Android

Internal distributions
The content of the present document belongs to the NEXI Group. All rights reserved.
Unauthorized distribution of this document outside the NEXI Group is forbidden.

 Page 37 of 78

 This content is classified as Internal

any kind of error messages. In this way it is more difficult for an attacker to
understand when this check is actually performed.

Android Since the apk modification is done on the static data, tampering can be
verified when starting the application. It is necessary to put this control in a
class of its own so that it can be encrypted with DexGuard:

 /**
This utility class performs tamper detection and creates the View. This
functionality can be placed in a separate class so that it can be encrypted,
as an additional layer of protection when tampering is detected. The
Activity itself cannot be encrypted, for technical reasons, but an inner class
or another class is fine anyway.
*/
private class Delegate {
 fun checkAndInitialize() {
 // Context for many methods is needed.
 val context = this@HelloWorldActivity
 /* A developer can choose their own value (or values) for OK, to make
the code less predictable. */
 val OK = 1
 /* Through the DexGuard library at runtime it detects if the apk has been
modified or repackaged in any way (with jar, zip, jarsigner, zipalign or any
other tool), after DexGuard has packed it. The return value is the value of
the optional integer argument OK (default = 0) if the apk is unchanged. */
 val apkChanged = TamperDetector.checkApk(context, OK)
 /* Using the DexGuard library at runtime it detects if the apk has been
rewritten with a different certificate, after DexGuard has packaged it. The
return value is the value of the optional integer argument OK (default = 0) if
the certificate is always the same. */
 val certificateChanged = CertificateChecker.checkCertificate(context,
OK)
 /* The developer can also explicitly pass the MD5 hash of a certificate, if
the application is signed only after DexGuard has packaged it. You can
print the MD5 hash of your keystore certificate with:
 keytool -list -keystore my.keystore

If the developer wants to extract the MD5 hash from the latest version of
the application, he can print it as follows:
 keytool -printcert -v -jarfile my.apk

If the developer is posting on the Amazon Store, they can find the MD5
hash at:
 Amazon Apps & Games Developer Portal> Binary File (s) Tab>
Settings> My Account.

With the MD5 hash, you can use one of these controls:*/
 // CertificateChecker.checkCertificate(context,
 // "FA:F8:0A:CB:26:C9:08:DD:3F:E4:A4:76:1B:37:3E:C1", OK);
 // CertificateChecker.checkCertificate(context,
 // "FAF80ACB26C908DD3FE4A4761B373EC1", OK);
 // CertificateChecker.checkCertificate(context,

Identification Code: GL-016 v.01 | Date of entry into force: 12.06.2023
Document Title: Secure Guideline Android

Internal distributions
The content of the present document belongs to the NEXI Group. All rights reserved.
Unauthorized distribution of this document outside the NEXI Group is forbidden.

 Page 38 of 78

 This content is classified as Internal

 // 0xFAF80ACB, 0x26C908DD, 0x3FE4A476, 0x1B373EC1, OK);
 // CertificateChecker.checkCertificate(context,
 // 0xFAF80ACB26C908DDL, 0x3FE4A4761B373EC1L, OK);
 //
 /* If the developer specifies a string, they should make sure it is largely
encrypted. Show a message. */
 val view = TextView(context)
 view.setText(if ((apkChanged == OK && certificateChanged == OK))
 "Hello world!"
 else
 "Tamper alert!")
 view.setGravity(Gravity.CENTER)
 // Change the background color if someone has changed the archive.
 if ((apkChanged != OK || certificateChanged != OK))
 {
 view.setBackgroundColor(Color.RED)
 }
 setContentView(view)
 // Briefly show a comment.
 val comment = if (certificateChanged != OK)
 "The certificate is not the expected certificate"
 else if (apkChanged != OK)
 "The application archive has been modified"
 else
 "The application has not been modified"
 Toast.makeText(context, comment, Toast.LENGTH_LONG).show()
 }
}

3.3.18 WHITEBOX CRYPTOGRAPHY

Requirement ID RE-008

Priority Low

Description The challenge that whitebox cryptography aims to address is to implement a
cryptographic algorithm in such a way that cryptographic assets remain
secure even when subject to whitebox attacks.

Whitebox cryptography can be useful in those cases where an encryption key
or other sensitive data needs to be hardcoded into the application. It works
by encrypting and decrypting dynamic application data with a whitebox
implementation of a cryptographic algorithm such as AES.

The whitebox encryption key is weaved in the decryption algorithm in such a
way that it can’t be extracted because it becomes part of the algorithm itself.

Identification Code: GL-016 v.01 | Date of entry into force: 12.06.2023
Document Title: Secure Guideline Android

Internal distributions
The content of the present document belongs to the NEXI Group. All rights reserved.
Unauthorized distribution of this document outside the NEXI Group is forbidden.

 Page 39 of 78

 This content is classified as Internal

The advantages of this approach consist in the fact that some secrets and
some sensitive parts of the mobile application are encrypted making the effort
of reverse engineering quite considerable.

Be aware that the attacks an adversary can perform are very dependent on
the construction of the whitebox implementation and the properties of the
underlying cipher. Hence, widely applicable attacks are difficult to deploy, and
there do not exist any automatic tools to break them.

There are, on the other hand, disadvantages such as the facts that:

• It is computationally more expensive resulting in slowing down the

application, which could also reduce device battery life significantly.

• It has a large code footprint.

Given the previous drawbacks, it should be considered to use whitebox
cryptography.

For example, applying the asset whitebox plugin to a large number of assets
would probably expand the application code footprint too much.

On the other hand, the overhead of protecting a single sensitive class or
native library with a whitebox encryption plugin is generally acceptable in
most cases.

3.3.19 ANTI-ROOT CONTROLS

Requirement ID RT-001

Priority Medium

Description Anti-rooting check can be performed at runtime to identify if the application is
running on a rooted device.

Anti-root control is available from DexGuard via API in the package:

com.guardsquare.dexguard.runtime.detection.RootDetector.isDeviceRoote
d(context, OK);
Check if the application is running on a rooted device

Since custom code is needed to implement these checks, it is necessary to
hide obfuscating the code, failing to do so could allow an attacker to find it
and remove it modifying the pseudocode.

When the detection found an issue, it is important to implement a behavior
that cannot be easily detected by an attacker. For instance, the application
could limit the functionalities provided to the user. This helps to mitigate the
possibility that an attacker bypasses the detection mechanism.

Identification Code: GL-016 v.01 | Date of entry into force: 12.06.2023
Document Title: Secure Guideline Android

Internal distributions
The content of the present document belongs to the NEXI Group. All rights reserved.
Unauthorized distribution of this document outside the NEXI Group is forbidden.

 Page 40 of 78

 This content is classified as Internal

Android An attacker can switch the environment at any time while the application is
running, so it is advisable to implement controls in an asynchronous class via
a background service.

It is necessary to put this control in a class of its own so that it can be
encrypted with DexGuard:

/ *
This utility performs debug detection, emulator detection and root privilege
detection and displays the View. If the environment is okay, the application
works normally and displays "Environment is ok". Otherwise it displays
information about the environment.

This functionality can be placed in a separate class so that they can be
encrypted, as an additional layer of protection along with tampering
detection and some essential codes. The Activity itself cannot be
encrypted, for technical reasons, but an inner class or another class is fine.

The Delegate class is implemented as an asynchronous Activity. This
ensures that the small overhead introduced by environment controls does
not affect the main application thread.
*/

private class Delegate : AsyncTask<Void, Int, Boolean>() {
 override fun onPreExecute() {
 super.onPreExecute()

 for (imageView in envCheckImageViewList) {
 imageView.setImageDrawable(null)
 }
 }
 protected override fun onProgressUpdate(vararg values: Int) {
 super.onProgressUpdate(values)

 val imageView = envCheckImageViewList.get(values[0])
 imageView.setImageDrawable(if (values[1] == 0) okIcon else
detectedIcon)
 }

 /**
 * This method will be performed in a separate thread.
 */
 override fun doInBackground(vararg voids: Void): Boolean? {
 // Context for many methods is needed.
 val context = this@HelloWorldActivity
 /* A developer can choose their own value (or values) for OK, to make
the code less predictable. */
 val OK = 1

 /* Through the DexGuard library at runtime it is detected if the device
is rooted. The return code is OK if not. */
 val isDeviceRooted = RootDetector. isDeviceRooted(OK)
 publishProgress(5, if (isDeviceRooted == OK) 0 else 1)

Identification Code: GL-016 v.01 | Date of entry into force: 12.06.2023
Document Title: Secure Guideline Android

Internal distributions
The content of the present document belongs to the NEXI Group. All rights reserved.
Unauthorized distribution of this document outside the NEXI Group is forbidden.

 Page 41 of 78

 This content is classified as Internal

 return true
 }
}

3.3.20 ANTI-DEBUGGING CONTROLS

Requirement ID RT-002

Priority Medium

Description The anti-debugging check can be run at runtime to identify if the application
is being analyzed while it is running using either of these techniques.

These controls are available from DexGuard via API in the package:

com.guardsquare.dexguard.runtime.detector.DebugDetector.isDebuggable
(context, OK);
Check if the application has the debug flag set to true

com.guardsquare.dexguard.runtime.detector.DebugDetector.isDebuggerC
onnected(OK);
Check if the application is debugging

com.guardsquare.dexguard.runtime.detector.DebugDetector.isSignedWith
DebugKey(context, OK);
Check if the application is signed with a debug key

com.guardsquare.dexguard.runtime.detector.EmulatorDetector.isRunningI
nEmulator(context, OK);
Check if the application is running on an emulator

Since custom code is needed to implement these checks, it is necessary to
hide obfuscating the code, failing to do so could allow an attacker to find it
and remove it modifying the pseudocode.

When the detection found an issue, it is important to implement a behavior
that cannot be easily detected by an attacker. For instance, the application
could limit the functionalities provided to the user. This helps to mitigate the
possibility that an attacker bypasses the detection mechanism.

Android An attacker can switch the environment at any time while the application is
running, so it is advisable to implement controls in an asynchronous class via
a background service.

Identification Code: GL-016 v.01 | Date of entry into force: 12.06.2023
Document Title: Secure Guideline Android

Internal distributions
The content of the present document belongs to the NEXI Group. All rights reserved.
Unauthorized distribution of this document outside the NEXI Group is forbidden.

 Page 42 of 78

 This content is classified as Internal

It is necessary to include this control in a class of its own so that it can be
encrypted with DexGuard:

/ *
This utility performs debug detection, emulator detection and root privilege
detection and displays the View. If the environment is okay, the application
works normally and displays "Environment is ok". Otherwise it displays
information about the environment.

This functionality can be placed in a separate class so that they can be
encrypted, as an additional layer of protection along with tampering
detection and some essential codes. The Activity itself cannot be
encrypted, for technical reasons, but an inner class or another class is fine.

The Delegate class is implemented as an asynchronous Activity. This
ensures that the small overhead introduced by environment controls does
not affect the main application thread.
*/
private class Delegate:AsyncTask<Void, Int, Boolean>() {
 protected override fun onPreExecute() {
 super.onPreExecute()
 for (imageView in envCheckImageViewList)
 {
 imageView.setImageDrawable(null)
 }
 }
 protected fun onProgressUpdate(vararg values:Int) {
 super.onProgressUpdate(values)
 val imageView = envCheckImageViewList.get(values[0])
 imageView.setImageDrawable(if (values[1] == 0) okIcon else
detectedIcon)
 }
 /**
 * This method will run in a separate class.
 */
 protected fun override doInBackground(vararg voids:Void):Boolean {
 // Context for many methods is needed.
 val context = this@HelloWorldActivity
 /* A developer can choose their own value (or values) for OK, to make
the code less predictable. */
 val OK = 1
 // Using the DexGuard library at runtime it detects if the application is
debuggable. The return code is OK if it isn't.
 val isDebuggable = DebugDetector.isDebuggable(context, OK)
 publishProgress(0, if (isDebuggable == OK) 0 else 1)
 // Using the DexGuard library at runtime it detects if a debugger is
connected to the application. The return code is OK if not.
 val isDebuggerConnected = DebugDetector.isDebuggerConnected(OK)
 publishProgress(1, if (isDebuggerConnected == OK) 0 else 1)
 // Using the DexGuard library at runtime, it detects whether the
application is signed with a debug key. The return code is OK if not.
 val isSignedWithDebugKey =
DebugDetector.isSignedWithDebugKey(context, OK)

Identification Code: GL-016 v.01 | Date of entry into force: 12.06.2023
Document Title: Secure Guideline Android

Internal distributions
The content of the present document belongs to the NEXI Group. All rights reserved.
Unauthorized distribution of this document outside the NEXI Group is forbidden.

 Page 43 of 78

 This content is classified as Internal

 publishProgress(2, if (isSignedWithDebugKey == OK) 0 else 1)
 // Using the DexGuard library at runtime, it detects whether the
application is running on an emulator. The return code is OK if not.
 val isRunningInEmulator =
EmulatorDetector.isRunningInEmulator(context, OK)
 publishProgress(3, if (isRunningInEmulator == OK) 0 else 1)
 return true
 }
}

3.3.21 ANTI-HOOKING CONTROLS

Requirement ID RT-003

Priority Medium

Description Anti-hooking checks can be performed at runtime to identify if the application
is being scanned while it is running using either of these techniques.

This control is available from DexGuard via API in the package:

com.guardsquare.dexguard.runtime.detector.HookDetector.isApplicationHo
oked(OK)

Since custom code is needed to implement this checks, it is necessary to
hide obfuscating the code, failing to do so could allow an attacker to find it
and remove it modifying the pseudocode.

When the detection found an issue, it is important to implement a behavior
that cannot be easily detected by an attacker. For instance, the application
could limit the functionalities provided to the user. This helps to mitigate the
possibility that an attacker bypasses the detection mechanism.

Android An attacker can switch the environment at any time while the application is
running, so it is advisable to implement controls in an asynchronous class via
a background service.

It is necessary to put this control in a class of its own so that it can be
encrypted with DexGuard:

/ *
This utility performs debug detection, emulator detection and root privilege
detection and displays the View. If the environment is okay, the application

Identification Code: GL-016 v.01 | Date of entry into force: 12.06.2023
Document Title: Secure Guideline Android

Internal distributions
The content of the present document belongs to the NEXI Group. All rights reserved.
Unauthorized distribution of this document outside the NEXI Group is forbidden.

 Page 44 of 78

 This content is classified as Internal

works normally and displays "Environment is ok". Otherwise it displays
information about the environment.

This functionality can be placed in a separate class so that they can be
encrypted, as an additional layer of protection along with tampering
detection and some essential codes. The Activity itself cannot be
encrypted, for technical reasons, but an inner class or another class is fine.

The Delegate class is implemented as an asynchronous Activity. This
ensures that the small overhead introduced by environment controls does
not affect the main application thread.
*/

private class Delegate : AsyncTask<Void, Int, Boolean>() {
 override fun onPreExecute() {
 super.onPreExecute()

 for (imageView in envCheckImageViewList) {
 imageView.setImageDrawable(null)
 }
 }
 protected override fun onProgressUpdate(vararg values: Int) {
 super.onProgressUpdate(values)

 val imageView = envCheckImageViewList.get(values[0])
 imageView.setImageDrawable(if (values[1] == 0) okIcon else
detectedIcon)
 }

 /**
 * This method will be performed in a separate thread.
 */
 override fun doInBackground(vararg voids: Void): Boolean? {
 // Context for many methods is needed.
 val context = this@HelloWorldActivity
 /* A developer can choose their own value (or values) for OK, to make
the code less predictable. */
 val OK = 1

 // Using the DexGuard library at runtime it detects if the application is
subject to hooking. The return code is OK if not. val
isApplicationHooked = HookDetector.isApplicationHooked(OK)
 publishProgress(5, if (isApplicationHooked == OK) 0 else 1)
 return true
 }
}

Identification Code: GL-016 v.01 | Date of entry into force: 12.06.2023
Document Title: Secure Guideline Android

Internal distributions
The content of the present document belongs to the NEXI Group. All rights reserved.
Unauthorized distribution of this document outside the NEXI Group is forbidden.

 Page 45 of 78

 This content is classified as Internal

3.3.22 ENCRYPTION OF PERSONAL DATA

Requirement ID DS-001

Priority High

Description If the application saves on the device sensitive information in clear or using
insecure encryption algorithms, an attacker could easily access that
information.

Usually, application saves sensitive information locally on the same device
on which they are running.

That sensitive information must be encrypted using a strong encryption
algorithm and encryption key, in order to be protected in case of unauthorized
access or rooted devices. This implies the implementation of secure
strategies in order to save the secret on the client in a secure manner.

Furthermore, the application must implement modern and up-to-date
encryption algorithms that are known for their robustness and security. The
key length should be appropriate for the chosen algorithm.

These are the current standard for encryption algorithms.

Asymmetric
encryption

RSA with minimum key length of 2048 bits

Symmetric encryption AES with minimum key length of 256 bit

Hashing algorithms SHA512

Finally, the application must limit the amount of local data saved. For
instance, it’s better to save only the following sensitive information on the
device:

• Authentication token

• Name and surname

• Last 4 digits of identification codes

• Seed or other cryptographic information

Android Starting with Android version 4.3 (API 18), Android allows you to securely
store encryption keys via KeyStore; these keys can then be used for
encryption and decryption of local data belonging to the mobile application.

Below is an example of creating the AES symmetric encryption key inserted
in the KeyStore; you can see that a custom alias is associated with the
encryption key:

KeyGenerator keyGenerator = KeyGenerator.getInstance(

Identification Code: GL-016 v.01 | Date of entry into force: 12.06.2023
Document Title: Secure Guideline Android

Internal distributions
The content of the present document belongs to the NEXI Group. All rights reserved.
Unauthorized distribution of this document outside the NEXI Group is forbidden.

 Page 46 of 78

 This content is classified as Internal

 KeyProperties.KEY_ALGORITHM_AES, "AndroidKeyStore");
keyGenerator.init(
 new KeyGenParameterSpec.Builder("CUSTOM_KEY_ALIAS",
 KeyProperties.PURPOSE_ENCRYPT |
KeyProperties.PURPOSE_DECRYPT)
 .setBlockModes(KeyProperties.BLOCK_MODE_GCM)

.setEncryptionPaddings(KeyProperties.ENCRYPTION_PADDING_NONE)
 .build());
SecretKey secretKey = keyGenerator.generateKey();

The key can then be read using the following code, providing its alias:

 val keyStore = KeyStore.getInstance("AndroidKeyStore")
 keyStore.load(null)
 val keyStoreKey = keyStore.getKey("CUSTOM_KEY_ALIAS", null) as
SecretKey

 val cipher = Cipher.getInstance("AES/GCM/NoPadding")
 cipher.init(Cipher.ENCRYPT_MODE, keyStoreKey)

Then the key recovered from the KeyStore, can be used to encrypt private
data, as shown below; keep in mind that the generation of the initialization
vector is delegated to Android:

 val textToEncrypt = "..."
 val TRANSFORMATION = "AES/GCM/NoPadding"
 val cipher = Cipher.getInstance(TRANSFORMATION)
 cipher.init(Cipher.ENCRYPT_MODE, getSecretKey())
 val iv = cipher.getIV()
 val encrypted =
cipher.doFinal(textToEncrypt.toByteArray(charset("UTF-8")))

Once the encrypted data has been received, it can be stored in the private
memory areas of the mobile application, using SharedPreferences in
MODE_PRIVATE mode, together with the relative IV:

val settings = getSharedPreferences(PREFS_NAME,
Context.MODE_PRIVATE)
val editor = settings.edit()
editor.putString("encryptedData", base64encoded_encryptedPayload)
editor.putString("iv", base64encoded_iv)

WARNING:

Identification Code: GL-016 v.01 | Date of entry into force: 12.06.2023
Document Title: Secure Guideline Android

Internal distributions
The content of the present document belongs to the NEXI Group. All rights reserved.
Unauthorized distribution of this document outside the NEXI Group is forbidden.

 Page 47 of 78

 This content is classified as Internal

When using SharedPreferences even in MODE_PRIVATE, if a user were to
move the application to the external memory, these data would still be
readable in clear text.

Furthermore, it must be noted that the use of ExternalStorage for sensitive
information is strongly discouraged.

For completeness, it is necessary to consider that KeyGenParameterSpec is
available for Android API <= 23, otherwise you will need to generate keys
with KeyPairGeneratorSpec.

Enabling access to KeyStore keys may depend on the security status of the
device. In particular, a key can only be accessed if the user authenticates
with a PIN or fingerprint.

The use of the encryption key is recommended, although it strongly depends
on the requirements of the device and there are devices without an unlocking
mechanism.

Refer to the setUserAuthenticationRequired and
setUserAuthenticationValidityDurationSeconds function, as shown in the
following code:

 val keyGenerator = KeyGenerator.getInstance(
 KeyProperties.KEY_ALGORITHM_AES, "AndroidKeyStore"
)
 keyGenerator.init(
 KeyGenParameterSpec.Builder(
 "CUSTOM_KEY_ALIAS",
 KeyProperties.PURPOSE_ENCRYPT or
KeyProperties.PURPOSE_DECRYPT
)
 .setBlockModes(KeyProperties.BLOCK_MODE_GCM)

.setEncryptionPaddings(KeyProperties.ENCRYPTION_PADDING_NONE)
 .setUserAuthenticationRequired(true)
 .setUserAuthenticationValidityDurationSeconds(120)
 .build()
)
 val secretKey = keyGenerator.generateKey()

Obviously, the use of this additional security measure requires the
implementation of a PIN sending mechanism to unlock the device with
KeyGuardManager.createConfirmDeviceCredentialIntent.

Android Jetpack Security

Within the AndroidX libraries, is offered a set of APIs dedicated to security
built as a wrapper around the operating system primitives whose task is to
improve and standardize the encryption procedures for files and sensitive
data contained in the system SharedPreferences.

The library offers two levels of protection:

Identification Code: GL-016 v.01 | Date of entry into force: 12.06.2023
Document Title: Secure Guideline Android

Internal distributions
The content of the present document belongs to the NEXI Group. All rights reserved.
Unauthorized distribution of this document outside the NEXI Group is forbidden.

 Page 48 of 78

 This content is classified as Internal

• Strong: Offers a balance between performance and robust
encryption levels. Suitable for consumer and banking applications.

• Maximum: Suitable for solutions that require hardware-based

keystores and user interaction to obtain encryption keys.

These libraries deal with data encryption "at rest", i.e. when they are stored
in non-volatile memory portions of the devices. Encryption takes place using
two different types of keys:

• key-set: it consists of one or more keys that are used to actually
encrypt the data. The key-set is in encrypted itself and is saved within
the SharedPreferences.

• Primary master key: is the key that is used to encrypt all key-sets,
and is stored within the system KeyStore.

The following example shows how an encrypted file can be created and read
using the security module of the Jetpack library.

 String masterKeyAlias =
MasterKeys.getOrCreate(MasterKeys.AES256_GCM_SPEC);

 File file = new File(context.getFilesDir(), "secret_data");
 EncryptedFile encryptedFile = EncryptedFile.Builder(
 file,
 context,
 masterKeyAlias,
 EncryptedFile.FileEncryptionScheme.AES256_GCM_HKDF_4KB
).build();

 // opening an output stream on an encrypted file
 FileOutputStream encryptedOutputStream =
encryptedFile.openFileOutput();

 // opening an input stream on an encrypted file
 FileInputStream encryptedInputStream = encryptedFile.openFileInput();

The following example shows how it is possible to insert data into the system
SharedPreferences in an encrypted manner, using the
EncryptedSharedPreferences class belonging to the Jetpack libraries. As a
result, both the keys and the values saved within the related XML files will be
encrypted.

 String masterKeyAlias =
MasterKeys.getOrCreate(MasterKeys.AES256_GCM_SPEC);

 SharedPreferences sharedPreferences =
EncryptedSharedPreferences.create(

Identification Code: GL-016 v.01 | Date of entry into force: 12.06.2023
Document Title: Secure Guideline Android

Internal distributions
The content of the present document belongs to the NEXI Group. All rights reserved.
Unauthorized distribution of this document outside the NEXI Group is forbidden.

 Page 49 of 78

 This content is classified as Internal

 "secret_shared_prefs",
 masterKeyAlias,
 context,

EncryptedSharedPreferences.PrefKeyEncryptionScheme.AES256_SIV,

EncryptedSharedPreferences.PrefValueEncryptionScheme.AES256_GCM
);

 // SharedPreferences can now be used as usual
 SharedPreferences.Editor editor = sharedPreferences.edit();

Finally, it should be noted that the Jetpack libraries offer an additional level
of security when generating the MasterKey. Since this key is based on the
keyGenParameterSpec pattern, it is possible to configure the parameters
passed to the MasterKeys.getOrCreate() method so that the MasterKey
requires, for example, a strong biometric authentication to be used.

SQLite

It is available an extension of the open source and multiplatform SQLCipher
for the secure storage of sensitive information using encryption best
practices.

The implementation of SQLCipher requires the inclusion of additional
libraries and the management of the encryption key in a secure manner. The
key must not be hardcoded inside the source code or any application files. If
an attacker could access the encryption key, it could decrypt the database
contents.

The following are the changes to implement in the Kotlin source code in order
to use SQLCipher.

1. Importing the appropriate classes from the net.sqlcipher library:

import net.sqlcipher.Cursor;
import net.sqlcipher.database.SQLiteDatabase;
import net.sqlcipher.database.SQLiteOpenHelper;

2. Loading the native libraries required by SQLCipher:

 constructor(context: Context) : super(context, DATABASE_NAME, null,
DATABASE_VERSION) {
 SQLiteDatabase.loadLibs(context)
 }

3. Passing the encryption secret as a parameter:

Identification Code: GL-016 v.01 | Date of entry into force: 12.06.2023
Document Title: Secure Guideline Android

Internal distributions
The content of the present document belongs to the NEXI Group. All rights reserved.
Unauthorized distribution of this document outside the NEXI Group is forbidden.

 Page 50 of 78

 This content is classified as Internal

var db = this.getWritableDatabase(this.secure_key)

References
• https://developer.android.com/training/articles/keystore.html

• https://developer.android.com/topic/security/data#kotlin

• https://developer.android.com/reference/android/security/keystore/K

eyProtection.html

• https://medium.com/@ericfu/securely-storing-secrets-in-an-android-

application-501f030ae5a3

• https://medium.com/@josiassena/using-the-android-keystore-

system-to-store-sensitive-information-3a56175a454b

• https://developer.android.com/reference/android/security/keystore/K

eyGenParameterSpec.Builder.html#setUserAuthenticationRequired

(boolean)

• https://github.com/doridori/Android-Security-

Reference/blob/master/framework/keystore.md#user-

authenticating-key-use

• https://github.com/doridori/Android-Security-

Reference/blob/master/framework/keystore.md#more-on-

setuserauthenticationrequiredtrue

• https://www.zetetic.net/sqlcipher/

• https://developer.android.com/topic/security/data

• https://developer.android.com/reference/android/security/keystore/K

eyGenParameterSpec.Builder

3.3.23 AVOID USE OF PRIVATE EMBEDDED DATA

Requirement ID DS-002

Priority Medium

Description It is a bad practice to embed sensitive data (like testing credentials, testing
environments URLs, etc.) inside the source code of the application because they
could be used by an attacker in order to perform further attacks.

Analyzing the source code with an automatic scanner or via a code review
process can help in identifying this information lowering the risk of leaking
potentially sensitive piece of information.

References
• https://owasp.org/www-project-web-security-testing-guide/v41/4-

Web_Application_Security_Testing/01-Information_Gathering/05-

Review_Webpage_Comments_and_Metadata_for_Information_Leaka

ge

Identification Code: GL-016 v.01 | Date of entry into force: 12.06.2023
Document Title: Secure Guideline Android

Internal distributions
The content of the present document belongs to the NEXI Group. All rights reserved.
Unauthorized distribution of this document outside the NEXI Group is forbidden.

 Page 51 of 78

 This content is classified as Internal

3.3.24 SECURE MANAGEMENT OF FILES

Requirement ID DS-003

Priority Medium

Description The most common security problem for an Android application is whether the
data saved on the device is accessible to other apps. There are three basic
ways to save data on a device:

• Internal storage: by default, files created by an app in the internal

memory are accessible only by the app that created them.

• External storage: files created on external memory, such as SD

cards, are globally readable and writable. It is not recommend using

this type of memory for saving unencrypted sensitive files. In

addition, it is advisable to carefully validate the input on files read

from external memory before using them or opening them in the

application context.

• Content providers: they offer a structured archiving mechanism that

can be restricted to your own application or exported for access by

other applications. In order to not give other applications access to

the ContentProvider, it is necessary to add the string android:

exported = false in the manifest. Viceversa, setting this attribute to

true will allow access to files by other apps.

References
• https://developer.android.com/training/articles/security-

tips#StoringData

3.3.25 SECURE IMPLEMENTATION OF AN APPLICATION PIN PAD

Requirement ID IN-001

Priority Medium

Description Applications developed for mobile devices may require the use of a PIN input
functionality.

This technique must be implemented in a secure way in order to avoid
sensitive information disclosure.

It is worth considering that PIN Pad must also be used if a credit card number
is manually typed.

Identification Code: GL-016 v.01 | Date of entry into force: 12.06.2023
Document Title: Secure Guideline Android

Internal distributions
The content of the present document belongs to the NEXI Group. All rights reserved.
Unauthorized distribution of this document outside the NEXI Group is forbidden.

 Page 52 of 78

 This content is classified as Internal

Android It's recommended to implement an application PIN Pad for features that need
it (such as when applications require to enter PAN numbers), rather than
using the system keyboard.

These pads will require the following characteristics:

• The numeric keys in the keypad must always be randomly arranged.

• No visual feedback should be provided on key pressing.

In such a way, a user will be protected from:

• Any "shoulder surfing" attacks

• Malware that screenshots the screen

• Any malicious software that replaces system keyboards with a key

logger.

Furthermore, in order to mitigate brute force attacks, it is suggested to limit
the number of PIN input attempts.

References
• https://www.kaspersky.it/blog/cloak-and-dagger-attack/13155/

• https://researchcenter.paloaltonetworks.com/2017/09/unit42-

android-toast-overlay-attack-cloak-and-dagger-with-no-permissions/

3.3.26 MEMORY WIPING

Requirement ID IN-002

Priority Medium

Description Sometimes applications might require users to enter private data, such as
PANs or passwords, which could be leaked in case of main memory
persistence.

It’s recommended to wipe the portion of the memory used to store sensitive
data as soon as they have been used, to reduce the time duration those
values are stored in RAM.

Android Due to the behavior of the Java Virtual Machine which manages the memory
allocation, it is not possible to determine the moment a variable is dismissed
in Java.

Also, since String objects are immutable, it’s recommended the use of char
arrays for the management of private data.

Char arrays used to store sensitive information must be overwritten with
zeros once the data has been used:

 Arrays.fill(chars_array, '\u0000')

Identification Code: GL-016 v.01 | Date of entry into force: 12.06.2023
Document Title: Secure Guideline Android

Internal distributions
The content of the present document belongs to the NEXI Group. All rights reserved.
Unauthorized distribution of this document outside the NEXI Group is forbidden.

 Page 53 of 78

 This content is classified as Internal

Keep in mind that the JVM could save in RAM multiple copies of a char array,
and in case of overwriting, only the last version of this copy could be deleted.

Nevertheless, the proposed strategy turns out to be the most appropriate
known way of wiping memory portions in Java.

References
• https://developer.android.com/reference/kotlin/javax/crypto/package

-summary

• https://docs.oracle.com/javase/8/docs/technotes/guides/security/cry

pto/CryptoSpec.html#PBEEx

• https://www.sjoerdlangkemper.nl/2016/05/22/should-passwords-be-

cleared-from-memory/

• https://security.stackexchange.com/questions/6753/deleting-a-java-

object-securely

3.3.27 INPUT VALIDATION

Requirement ID IN-003

Priority High

Description If the application does not perform any validation on user supplied inputs an
attacker could send a malicious character sequence to try and exploit a
security weakness.

In this scenario it is worth noting that the attack surface can be very extensive
because there can be injection attempts on the client side (ex. template
injection, XSS, etc.), on the database or even on the server side (ex.
deserialization injection, XXE, etc.).

Android It’s a good practice to use a centralized validation system for the application,
so that, in case of data validation errors, the input will be rejected.

Every user input must always be validated before the application uses it.

It is recommended to perform the following actions:

• Type checking and type casting

• Data structure checking

• Characters subsets checks

• Maximum length controls

Be sure that input is validated according to the application requirements by
checking the compliance of its value range and meaning.

Identification Code: GL-016 v.01 | Date of entry into force: 12.06.2023
Document Title: Secure Guideline Android

Internal distributions
The content of the present document belongs to the NEXI Group. All rights reserved.
Unauthorized distribution of this document outside the NEXI Group is forbidden.

 Page 54 of 78

 This content is classified as Internal

If possible, the best approach would be to use a whitelist of allowed values
and reject any other inputs.

If it’s not possible to use this approach, use regular expressions to make sure

that only allowed characters can be entered and that its length is within the

expected range.

References
• https://cheatsheetseries.owasp.org/cheatsheets/Input_Validation_C

heat_Sheet.html

• https://owasp.org/www-

community/vulnerabilities/Improper_Data_Validation

3.3.28 USAGE OF PREPARED STATEMENTS

Requirement ID IN-004

Priority High

Description The application is vulnerable to client-side SQL Injection when it fails to
validate and encode user-supplied input to create queries against the
database.

When database queries have to be performed using user input data, the
correct approach is to use prepared statements.

String concatenation mixing input data and SQL code should never be used.

Prepared statements allow developers to have a separation between code
and data, blocking, therefore, any SQL injection attacks.

Android Prepared statements allow developers to have a separation between code
and data, blocking, therefore, any SQL injection attacks.

It's possible to use prepared statements through the correct usage of query
method of android.database.sqlite, which allows parametric values to the
selection parameter, and it's immune to SQL Injection assuming, obviously,
that selection is not dynamically built with trusted and untrusted values.

The following example shows the case of correct and secure usage of the
query method:

SQLiteDatabase db = mDbHelper.getReadableDatabase();

String[] projection = {
 BaseColumns._ID,
 FeedEntry.COLUMN_NAME_TITLE,
 FeedEntry.COLUMN_NAME_SUBTITLE
 };

Identification Code: GL-016 v.01 | Date of entry into force: 12.06.2023
Document Title: Secure Guideline Android

Internal distributions
The content of the present document belongs to the NEXI Group. All rights reserved.
Unauthorized distribution of this document outside the NEXI Group is forbidden.

 Page 55 of 78

 This content is classified as Internal

String selection = FeedEntry.COLUMN_NAME_TITLE + " = ?";
String[] selectionArgs = { "My Title" };

String sortOrder = FeedEntry.COLUMN_NAME_SUBTITLE + " DESC";

Cursor cursor = db.query(
 FeedEntry.TABLE_NAME, // The table to query
 projection, // The array of columns to return (pass null to get
everything)
 selection, // The column for the WHERE clause
 selectionArgs, // The value for the WHERE clause
 null, // do not group rows
 null, // do not filter by row groups
 sortOrder // sorting
);

References
• https://developer.android.com/training/data-

storage/sqlite.html#kotlin

• https://developer.android.com/reference/android/database/sqlite/SQ

LiteDatabase.html

• https://developer.android.com/training/articles/security-

tips.html#InputValidation

3.3.29 COMMUNICATION OVER AN ENCRYPTED CHANNEL

Requirement ID SC-001

Priority High

Description Sensitive information that is exchanged between client and server must
always pass through encrypted channels (e.g. HTTPS).

It's important to be aware that the use of HTTPS is always recommended for
any connection, as mobile devices frequently connect to unsecure networks,
such as public Wi-Fi hotspots, thus exposing themselves to Man-in-the-
Middle (MitM) attacks.

It’s always necessary to verify that server and client negotiate the use of
robust ciphers, and that the server supports only TLS protocols, and not SSL.

Android It's very important to ensure that the app correctly validates the TLS
certificate returned by servers in order to determine and block any Man-in-
the-Middle attempt.

Identification Code: GL-016 v.01 | Date of entry into force: 12.06.2023
Document Title: Secure Guideline Android

Internal distributions
The content of the present document belongs to the NEXI Group. All rights reserved.
Unauthorized distribution of this document outside the NEXI Group is forbidden.

 Page 56 of 78

 This content is classified as Internal

The adoption of Certificate Pinning is also recommended (see paragraph
3.3.30).

To establish a secure connection, it is required a certificate exchange.
Usually, an application uses a set of trusted CAs pre-installed on the
operating system. However, this behavior exposes the application to the risk
of Man-in-the-Middle attacks in the potential case any of these CAs wrongly
issue a fraudulent certificate or if a malicious CA is installed.

References
• https://books.nowsecure.com/secure-mobile-

development/en/sensitive-data/fully-validate-ssl-tls.html

• https://developer.android.com/training/articles/security-ssl.html

3.3.30 IMPLEMENT SSL CERTIFICATE PINNING

Requirement ID SC-002

Priority High

Description It's advisable to use SSL Certificate Pinning techniques in order to ensure
secure client-server communications. Through this technique the mobile
application can use a whitelist of certificates or expected public keys, so it
can compare the remote certificate to the expected ones.

The whitelist is usually called "pinset" and is chosen during the development
phase to ensure that it's not possible for an attacker to modify the pins in
Main-in-the-Middle scenarios.

Therefore, certificate pinning mitigates the problem of compromised CAs,
malicious CA cases and Main-in-the-Middle scenarios.

Android Application should implement SSL Pinning protections. DexGuard offers SSL
Pinning support by providing specific APIs.

It is common practice to perform pinning on public certificates since, in case
of frequent certificate changes, it's usual practice to keep the public key static,
and this reduces any updating problems in case of certificate renewal.

In order to get the PINs from public keys from a given host, the following
command can be used on Unix systems:

echo | openssl s_client -connect HOST:443 2>/dev/null | openssl x509 -
pubkey -noout | openssl enc -base64 -d | md5sum

The previous command will extract the md5 digest.

Identification Code: GL-016 v.01 | Date of entry into force: 12.06.2023
Document Title: Secure Guideline Android

Internal distributions
The content of the present document belongs to the NEXI Group. All rights reserved.
Unauthorized distribution of this document outside the NEXI Group is forbidden.

 Page 57 of 78

 This content is classified as Internal

Pinning through HttpURLConnection

The example application below creates an HTTPS connection by performing
the pinning on the public key present in the leaf certificate.

First, DexGuard PublicKeyTrustManager class is imported, then
getConnection method is implemented, returning a HttpURLConnection
object, which performs the pinning process independently, since it uses the
PublicKeyTrustManager.

PublicKeyTrustManager is a DexGuard class that accepts in its constructor
a series of public keys MD5 hashes of the certificates in order to perform
pinning.

import com.guardsquare.dexguard.runtime.net.PublicKeyTrustManager

object PinnedPubKeyConnection {
 @Throws(Throwable::class)
 fun getConnection(endpoint: String): HttpURLConnection {
 val url = URL(endpoint)
 val urlConnection: HttpURLConnection

 if (url.getProtocol().toLowerCase().equals("https")) {
 val trustManager =
PublicKeyTrustManager(arrayOf("8FCF8FD90E88D6E35BA8CB6D8836A
2BF"))

 val trustManagers = arrayOf<TrustManager>(trustManager)
 val sslContext = SSLContext.getInstance("TLS")
 sslContext.init(null, trustManagers, null)
 urlConnection = url.openConnection() as HttpsURLConnection

urlConnection.setSSLSocketFactory(sslContext.getSocketFactory())
 } else {
 urlConnection = url.openConnection() as HttpURLConnection
 }

 return urlConnection
 }
}

Whenever the developer wants to start a connection via HttpURLConnection,
he will have to use the getConnection method as in the example shown
below.

. . .
val url = "https://sec.ure.com”;
try
{
 val pinConnection = PinnedPubKeyConnection.getConnection(url)
 InputStreamReader(pinConnection.getInputStream())

Identification Code: GL-016 v.01 | Date of entry into force: 12.06.2023
Document Title: Secure Guideline Android

Internal distributions
The content of the present document belongs to the NEXI Group. All rights reserved.
Unauthorized distribution of this document outside the NEXI Group is forbidden.

 Page 58 of 78

 This content is classified as Internal

 (Exception)
 ex
 run({
 // Exception with connection or SSL Pin not valid
 })
}
 . . .

Pinning with Network Security Configuration

Starting from Android N it is possible to implement certificate pinning through
an XML configuration file which will then be referenced within the
AndroidManifest. This type of implementation has the peculiarity of being
effective both in the network calls generated by the Kotlin code, and by those
generated by the WebView.

The following example file shows how it is possible to specify the desired
certificates:

File: network_security_config.xml

<?xml version="1.0" encoding="utf-8"?>
<network-security-config>
 <domain-config>
 <domain includeSubdomains="true">domain.com</domain>
 <pin-set>
 <pin digest="SHA-
256">4hw5tz+scE+TW+mfFWn1dqvfLG+nU7tq1V8=</pin>
 <pin digest="SHA-
256">YLh1dUR9y6KnbQG/uEtLMkBgFF2Fuihg=</pin>
 </pin-set>
 </domain-config>
</network-security-config>

Then, this file needs to be referenced inside the AndroidManifest.xml with the
following code:

<?xml version="1.0" encoding="utf-8"?>
<manifest ... >
 <application
android:networkSecurityConfig="@xml/network_security_config"
 ... >
 ...
 </application>
</manifest>

Pinning with Retrofit

Identification Code: GL-016 v.01 | Date of entry into force: 12.06.2023
Document Title: Secure Guideline Android

Internal distributions
The content of the present document belongs to the NEXI Group. All rights reserved.
Unauthorized distribution of this document outside the NEXI Group is forbidden.

 Page 59 of 78

 This content is classified as Internal

It is possible to implement certificate pinning through the Retrofit library,
which being implemented on top of OkHttp requires the configuration of both
components.

The following code shows an example of implementing certificate pinning
using Retrofit.

CertificatePinner certPinner = new CertificatePinner.Builder()
 .add("domain.com",
 "sha256/4hw5tz+scE+…+nU7tq1V8=")
 .build();
OkHttpClient okHttpClient = new OkHttpClient.Builder()
 .certificatePinner(certPinner)
 .build();
Retrofit retrofit = new Retrofit.Builder()
 .baseUrl("https://domain.com")
 .addConverterFactory(GsonConverterFactory.create())
 .client(okHttpClient)
 .build();

Pinning in WebViews

DexGuard class used to perform pinning in a WebView scenario is
SSLPinningWebViewClient, which requires an array of the certificate public
keys belonging to the server he wants to connect to.

Follows a code example of an activity that instantiate a new activity that
contains the application WebView. The PIN and the URL to connect are used
as arguments for PinningWebViewActivity.createPinningWebViewIntent.

class SampleStartActivity:Activity() {
 private val url = "https://sec.ure.com/ "
 private val publicKeyHashes =
arrayOf<String>("8FCF8FD90E88D6E35BA8CB6D8836A2BF")
 protected fun onCreate(savedInstanceState:Bundle) {
 super.onCreate(savedInstanceState)
 …
 val btn = Button(this)
 btn.setText("SSL check before handshake.")
 btn.setOnClickListener(object:View.OnClickListener() {
 fun onClick(v:View) {
 startActivity(PinningWebViewActivity.createPinningWebViewIntent(
 this@SampleStartActivity, url, publicKeyHashes
))
 }
 })
 }
}

Identification Code: GL-016 v.01 | Date of entry into force: 12.06.2023
Document Title: Secure Guideline Android

Internal distributions
The content of the present document belongs to the NEXI Group. All rights reserved.
Unauthorized distribution of this document outside the NEXI Group is forbidden.

 Page 60 of 78

 This content is classified as Internal

Then, the WebView is initialized with the DexGuard
SSLPinningWebViewClient client, which will transparently perform the
pinning action.

If the certificate validation is not successful such as in case of a MitM attack,
an error message will be displayed.

import com.guardsquare.dexguard.runtime.net.SSLPinningWebViewClient
import
com.guardsquare.dexguard.runtime.net.SimpleSSLPinningWebViewClient
import
com.guardsquare.dexguard.runtime.net.WrongSSLCertificateListener
class PinningWebViewActivity: Activity() {
 protected override fun onCreate(savedInstanceState: Bundle) {
 super.onCreate(savedInstanceState)
 val url = getIntent().getStringExtra(EXTRA_URL)
 val keyHashes = getIntent().getStringArrayExtra(EXTRA_HASHES)
 val webView = WebView(this)
 val client = createPinningClient(webView, keyHashes)
 webView.setWebViewClient(client)
 webView.loadUrl(url)
 setContentView(webView)
 }
 private fun createPinningClient(view:WebView,
publicKeyHashes:Array<String>): WebViewClient {
 val webClient = SSLPinningWebViewClient(publicKeyHashes)

webClient.addWrongCertificateListener(object:WrongSSLCertificateListene
r() {
 fun onWrongCertificate() {
 runOnUiThread(object:Runnable {
 public override fun run() {
 Toast.makeText(getApplicationContext(),
 "Wrong certificate, page will not load.",
 Toast.LENGTH_LONG).show()
 }
 })
 }
 })
 return webClient
 }
 companion object {
 val EXTRA_URL = "extraUrl"
 val EXTRA_HASHES = "extraHashes"
 fun createPinningWebViewIntent(context: Context, url:String,
 keyHashes:Array<String>): Intent {
 return createGenericPinningWebviewIntent(context, url,
keyHashes)
 }
 private fun createGenericPinningWebviewIntent(context:Context,
url:String,
 keyHashes:Array<String>):Intent {
 val intent = Intent(context, PinningWebViewActivity::class.java)
 intent.putExtra(EXTRA_URL, url)

Identification Code: GL-016 v.01 | Date of entry into force: 12.06.2023
Document Title: Secure Guideline Android

Internal distributions
The content of the present document belongs to the NEXI Group. All rights reserved.
Unauthorized distribution of this document outside the NEXI Group is forbidden.

 Page 61 of 78

 This content is classified as Internal

 intent.putExtra(EXTRA_HASHES, keyHashes)
 return intent
 }
 }
}

References
• https://developer.android.com/training/articles/security-ssl.html

• https://books.nowsecure.com/secure-mobile-

development/en/sensitive-data/fully-validate-ssl-tls.html

• https://owasp.org/www-

community/controls/Certificate_and_Public_Key_Pinning

• https://medium.com/@appmattus/android-security-ssl-pinning-

1db8acb6621e

• https://developer.android.com/training/articles/security-config

3.3.31 IPC INTERFACES SECURE MANAGEMENT

Requirement ID IPC-001

Priority Low

Description If the application exposes public interfaces accessible from other
applications, it's mandatory to verify that it’s not possible to maliciously abuse
them by third-party applications installed on the same device.

A malicious application may perform actions to check if the targeted
application does not verify the trustworthiness of the invoker.

URL schemes offer a potential attack vector into the application, so it is
necessary to validate all URL parameters and discard any malformed URLs.
In addition, it is suggested to limit the available actions to those that do not
risk the user’s data.

Android If it's not required to let external applications to use the components of our
application, it's advisable to define them as non-exportable, by configuring
the android:exported attribute to false in the AndroidManifest.xml manifest
file.

On the contrary, if it's required to expose those components, it's a good
practice to protect them by defining "custom" permissions that must be
requested by third-party applications to access those components.

Specifically, if the mechanisms of IPC (e.g. Intent, Binder, Service or
BroadcastReceiver) do not require to be accessible from external
applications, it's advisable to configure the android:exported=false attribute

Identification Code: GL-016 v.01 | Date of entry into force: 12.06.2023
Document Title: Secure Guideline Android

Internal distributions
The content of the present document belongs to the NEXI Group. All rights reserved.
Unauthorized distribution of this document outside the NEXI Group is forbidden.

 Page 62 of 78

 This content is classified as Internal

in the relative element of the component inside the manifest, as shown in the
following example:

<receiver android:name=“my.special.receiver”
 android:exported=false>
[. . .]
</receiver>

Also, it's advisable to always specify the android:exported value in order to
not introduce vulnerabilities because of an unexpected default behavior.

In fact, default services are not exported by default, but if intent filters are
added to their declaration, they are automatically exported and available as
IPC invocation to third party apps.

In case access from other applications is required, developers must define a
custom permission using the android:permission attribute, as shown in the
example below:

<permission android:name="my.own.mypermission"
 android:label="my_permission"
 android:protectionLevel="signature" />
[. . .]
<receiver android:name=“my.special.receiver”
 android:exported=true
 android:permission=“my.own.permission”
 android:protectionLevel=”signature”>
[. . .]
</receiver>

Keep in mind that setting the parameter android:protectionLevel to signature
allows to guarantee a correct access control, as it ensures that the external
app which intends to use the service, has been developed by the same entity
(publisher with same certificate) that implemented the app that provide it.

The following Kotlin code snippet shows an implementation example of a
runtime check on contact reading permissions.

if ((ContextCompat.checkSelfPermission(this,
 Manifest.permission.READ_CONTACTS) !==
PackageManager.PERMISSION_GRANTED))
{
 if (ActivityCompat.shouldShowRequestPermissionRationale(this,

Manifest.permission.READ_CONTACTS))
 {
 // Visualizzazione di una spiegazione all'utente
 }
 else
 {
 ActivityCompat.requestPermissions(this,

Identification Code: GL-016 v.01 | Date of entry into force: 12.06.2023
Document Title: Secure Guideline Android

Internal distributions
The content of the present document belongs to the NEXI Group. All rights reserved.
Unauthorized distribution of this document outside the NEXI Group is forbidden.

 Page 63 of 78

 This content is classified as Internal

arrayOf<String>(Manifest.permission.READ_CONTACTS),

MY_PERMISSIONS_REQUEST_READ_CONTACTS)
 // MY_PERMISSIONS_REQUEST_READ_CONTACTS è una costante
intera
 }
}

A snippet of code for managing the user response is shown below.

override fun onRequestPermissionsResult(requestCode:Int,
permissions:Array<String>, grantResults:IntArray) {
 when (requestCode) {
 MY_PERMISSIONS_REQUEST_READ_CONTACTS -> {
 if ((grantResults.size > 0 && grantResults[0] ==
PackageManager.PERMISSION_GRANTED))
 {
 // permission granted
 }
 else
 {
 // permission not granted
 }
 return
 }
 }
 }

Since, as mentioned, Android activities are considered private by default
(android:exported=false) unless they contain an <intent-filter>, it's advisable
to continue the interaction only if the received intent is valid.

An Intent is an abstract representation of an action to be performed
containing the Description of the operation and the data to be passed to the
recipient. Android defines a form of messaging for communication between
components of the same app, or different apps, via binder calls.

protected void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);
 Intent intent = getIntent();
 Bundle extras = intent.getExtras();
 // Check if intents and extras match the whitelist

If the component to be protected is a content provider, developers can use
two different permissions type: one for reading and another one for writing.

Identification Code: GL-016 v.01 | Date of entry into force: 12.06.2023
Document Title: Secure Guideline Android

Internal distributions
The content of the present document belongs to the NEXI Group. All rights reserved.
Unauthorized distribution of this document outside the NEXI Group is forbidden.

 Page 64 of 78

 This content is classified as Internal

<provider android.name="com.example.testapps.test1.MailProvider"
android.authorities="com.example.testapps.test1.mailprovider"
android.readPermission="com.example.testapps.test1.permission.DB_RE
AD"
android.writePermission="com.example.testapps.test1.permission.DB_WR
ITE">
</provider>
</service>

Furthermore, another possible solution is to implement an authentication
mechanism based on verifying the signature of the calling application against
a set of authorized signatures.

The following Kotlin code example implements the caller validation of the
received intent by verifying the signature which, however, suffers from the
limitation given by the fact that it only works correctly in a ContentProvider.

 fun onIntentReceived(context: Context, intent: Intent) {
 val pid = Binder.getCallingPid()
 val uid = Binder.getCallingUid()
 val pm = context.getPackageManager()
 val packages = pm.getPackagesForUid(uid) ?: throw
IntentValidationException("Invalid UID $uid")
 for (packageName in packages) {
 val packageInfo = pm.getPackageInfo(packageName,
GET_SIGNATURES)
 val appStore = pm.getInstallerPackageName(packageName)
 verifySender(packageName, appStore, packageInfo.signatures)
 }
 }

The Activity component offers the getCallingPackage method to extract the
caller information, but it must be invoked via startActivityForResult. The
Service component allows the invocation of Binder.getCallingUid (), but it is
necessary to extend the class and implement a custom handler, as shown in
the following code example.

class TestRawService : Service() {
 internal val mMessenger = Messenger(IncomingHandler())
 override fun onBind(intent: Intent): IBinder {
 return mMessenger.getBinder()
 }

 internal inner class IncomingHandler : Handler() {
 override fun sendMessageAtTime(msg: Message, uptimeMillis: Long):
Boolean {
 // Here the Binder.getCallingUid () works!
 return super.sendMessageAtTime(msg, uptimeMillis)
 }

Identification Code: GL-016 v.01 | Date of entry into force: 12.06.2023
Document Title: Secure Guideline Android

Internal distributions
The content of the present document belongs to the NEXI Group. All rights reserved.
Unauthorized distribution of this document outside the NEXI Group is forbidden.

 Page 65 of 78

 This content is classified as Internal

 override fun handleMessage(msg: Message) {
 // Do something
 }
 }
}

In addition, to mitigate the risk of compromising the integrity of the received
message, it is possible to digitally sign its content, as shown by the following
sender-side Kotlin code fragment.

 val parcel = Parcel.obtain()
 var bundle = intent.extras
 if (bundle == null) {
 bundle = Bundle()
 intent.replaceExtras(bundle)
 }
 assert(!bundle.containsKey("publicKey") &&
!bundle.containsKey("signature"))
 bundle.writeToParcel(parcel, 0)
 val bytes = parcel.marshall()
 parcel.recycle()
 val signature = createSignature(bytes)
 bundle.putByteArray("publicKey", getPublicKey())
 bundle.putByteArray("signature", signature)

The receiving side code for verifying the intent received by validating the
signature is instead the following.

Bundle bundle = intent.getExtras();
assert(bundle != null);
assert(bundle.containsKey("publicKey") &&
bundle.containsKey("signature"));
byte[] signature = bundle.getByteArray("signature");
byte[] publicKey = bundle.getByteArray("publicKey");
bundle.remove("signature");
bundle.remove("publicKey");
Parcel parcel = Parcel.obtain();
bundle.writeToParcel(parcel, 0);
byte[] bytes = parcel.marshall();
parcel.recycle();
verifySignature(bytes, signature, publicKey);

Also, in order to mitigate the risk of replay attacks, it is possible to add the
current timestamp to the message.

Bundle bundle = intent.getExtras();
if(bundle == null){
bundle = new Bundle();

Identification Code: GL-016 v.01 | Date of entry into force: 12.06.2023
Document Title: Secure Guideline Android

Internal distributions
The content of the present document belongs to the NEXI Group. All rights reserved.
Unauthorized distribution of this document outside the NEXI Group is forbidden.

 Page 66 of 78

 This content is classified as Internal

}
bundle.writeToParcel(parcel, 0);
byte[] bytes = encrypt(parcel.marshall());
parcel.recycle();
bundle = new Bundle();
bundle.putByteArray("payload", bytes);
bundle.putLong("timestamp", SystemClock.elapsedRealtimeNanos());
bundle.putByteArray("publicKey", getPublicKey());
byte[] signature = createSignature(bytes);
bundle.putByteArray("signature",signature);
intent.replaceExtras(bundle);

Below is the code fragment for the validation of the received intent, including
the timestamp of the instant of creation.

 var bundle = intent.extras!!
 assert(bundle.containsKey("publicKey") &&
bundle.containsKey("timestamp"))
 val timestamp = bundle.getByteArray("timestamp")
 bundle.remove("timestamp")
 val publicKey = bundle.getByteArray("publicKey") bundle !!. remove
"publicKey"
 verifyAgainstReplay(timestamp, publicKey)
 assert(bundle.containsKey("payload") &&
bundle.containsKey("signature"))
 var payload = bundle.getByteArray("payload") bundle !!. remove
"payload"
 val signature = bundle.getByteArray("signature")
 bundle.remove("signature")
 verifySignature(payload, signature, publicKey)
 payload = decrypt(payload)
 val parcel = Parcel.obtain()
 parcel.unmarshall(payload, 0, payload!!.size)
 bundle = Bundle.CREATOR.createFromParcel(parcel)
 intent.replaceExtras(bundle)

References
• https://developer.android.com/training/articles/security-

tips.html#Permissions

• https://developer.android.com/guide/topics/manifest/permission-

element.html#plevel

• https://books.nowsecure.com/secure-mobile-

development/en/android/implement-intents-carefully.html

• https://books.nowsecure.com/secure-mobile-

development/en/android/check-activities.html

• https://books.nowsecure.com/secure-mobile-

development/en/android/implement-content-providers-carefully.html

• https://books.nowsecure.com/secure-mobile-

development/en/android/use-broadcasts-carefully.html

Identification Code: GL-016 v.01 | Date of entry into force: 12.06.2023
Document Title: Secure Guideline Android

Internal distributions
The content of the present document belongs to the NEXI Group. All rights reserved.
Unauthorized distribution of this document outside the NEXI Group is forbidden.

 Page 67 of 78

 This content is classified as Internal

• https://books.nowsecure.com/secure-mobile-

development/en/android/protect-application-services.html

3.3.32 WEBVIEW SECURE SETTINGS

Requirement ID WV-001

Priority High

Description Incorrect use of the WebView can expose applications to attacks in the WEB
context in the event that the HTML and/or JavaScript code can be
manipulated by a malicious user.

Android It is recommended to not invoke setJavaScriptEnabled method and to not
enable JavaScript interfaces with addJavaScriptInterface.

In case it is required to enable the execution of JavaScript code within a
WebView or to use the JavaScript interfaces through the
addJavaScriptInterface method, it is necessary to make sure that the HTML
and JavaScript sources interpreted within the WebView themselves come
from a reliable source that implements appropriate user input sanitization.

In the event that these measures are not properly implemented, it could be
possible to inject malicious code into the WebView and that could lead to the
arbitrary execution of Java / Kotlin methods on the device of the victim user.

The following code example shows how it is possible to improve the security
of a WebView by disabling the execution of JavaScript code, prohibiting
access to files and disabling plugins within it.

object Util {
 fun disableRiskySettings(webView: WebView) {
 webView.settings.javaScriptEnabled = false
 webView.settings.pluginState = WebSettings.PluginState.OFF
 webView.settings.allowFileAccess = false
 }

It is also recommended blocking any HTTP requests to unexpected domains
using shouldOverrideUrlLoading and shouldInterceptRequest and using a
whitelist of legitimate domains:

class SaferWebViewClient(hostsWhitelsit: String) : WebViewClient() {

 private val hostsWhitelist: Array<String>

 private val webResourceResponseFromString: WebResourceResponse

Identification Code: GL-016 v.01 | Date of entry into force: 12.06.2023
Document Title: Secure Guideline Android

Internal distributions
The content of the present document belongs to the NEXI Group. All rights reserved.
Unauthorized distribution of this document outside the NEXI Group is forbidden.

 Page 68 of 78

 This content is classified as Internal

 get() =
getUtf8EncodedWebResourceResponse(StringBufferInputStream("alert('!N
O!')"))

 init {
 this.hostsWhitelist = this.hostsWhitelist
 }

 override fun shouldInterceptRequest(view: WebView, url: String):
WebResourceResponse? {
 return if (isValidHost(url)) {
 super.shouldInterceptRequest(view, url)
 } else {
 webResourceResponseFromString
 }
 }

 private fun getUtf8EncodedWebResourceResponse(data: InputStream):
WebResourceResponse {
 return WebResourceResponse("text/css", "UTF-8", data)
 }

 override fun shouldOverrideUrlLoading(view: WebView, url: String):
Boolean {
 return isValidHost(url)
 }

 private fun isValidHost(url: String): Boolean {
 if (!TextUtils.isEmpty(url)) {
 val host = Uri.parse(url).getHost()
 for (whitelistedHost in hostsWhitelist) {
 if (whitelistedHost.equals(host, ignoreCase = true)) {
 return true
 }
 }
 }
 return false
 }

}

Encoding

If it is necessary to enable the execution of JavaScript code within the
WebView, it is necessary to manage any variable controlled by the user that
will compose the source code displayed within the WebView.

For example, in the event that the user can control a portion of data similar
to the following, which will be inserted in the HTML context:

“host.it?user_controlled=<script>// JavaScript code</script>”

Identification Code: GL-016 v.01 | Date of entry into force: 12.06.2023
Document Title: Secure Guideline Android

Internal distributions
The content of the present document belongs to the NEXI Group. All rights reserved.
Unauthorized distribution of this document outside the NEXI Group is forbidden.

 Page 69 of 78

 This content is classified as Internal

It will be necessary to apply an encoding function so that the representation
of the data is modified as follows:

“host.it?user_controlled=<script>//codiceJavaScript</script>”

In this way, in the event that this value is inserted within an HTML page, the
structure of the DOM will not be changed and the WebView will display the
characters encoded in their equivalent (e.g., & lt; in <).

This can be done by applying the TextUtils.htmlEncode() method to the string
received in input by the user, as shown below.

var customHtml = getFromTemplate(TextUtils.htmlEncode(receivedInput))

It should also be noted that this encoding method will be effective if the user
input is inserted within an HTML context, while it will be totally ineffective if
the insertion takes place in the JavaScript context.

In the event that the insertion takes place in the JavaScript context, an input
validation phase must be applied to verify that the value received at the input
conforms to the expected format and an escaping dedicated to the context in
question must subsequently be applied.

In the event that the HTML and JavaScript code rendered by the WebView
comes from a web server, and in the event that this code is dynamically
generated on the basis of parameters that can be controlled by a user, it is
recommended, similarly to what described above, to carry out the HTML
encoding of all the data received in input that will compose the final HTML
code.

This encoding can be done through the features offered by the server
framework used, or open-source libraries can be used.

Hardening WebView

It is advisable to configure the WebView used in order to expose the minimum
set of features necessary for the proper functioning of the same in relation to
the business of the application.

The controllable WebSettings and their purpose are listed below.

• setAllowContentAccess: allows the uploading of content through
content providers installed on the device

• setAllowFileAccess: allows access to the file system

• setAllowFileAccessFromFileURLs: allows cross-origin access to
local resources through the file:// scheme by other files uploaded
through the same scheme

Identification Code: GL-016 v.01 | Date of entry into force: 12.06.2023
Document Title: Secure Guideline Android

Internal distributions
The content of the present document belongs to the NEXI Group. All rights reserved.
Unauthorized distribution of this document outside the NEXI Group is forbidden.

 Page 70 of 78

 This content is classified as Internal

• setAllowUniversalAccessFromFileURLs: allows access to local
resources through the file:// scheme from any source

• setBlockNetworkLoads: allows access to remote resources

• setJavaScriptCanOpenWindowsAutomatically: allows the execution
of the window.open() function

• setMixedContentMode: it allows the loading of resources on an
unencrypted channel by pages served on an unencrypted channel

• setSafeBrowsingEnabled: enables the native SafeBrowsing engine

Since the default behavior of the above settings is heterogeneous, it is
recommended to set these values to false (with the exception of
setSafeBrowsingEnabled which must be set to true) and to subsequently
enable only the features strictly necessary for the correct operation of the
application.

This can be done with the following code:

webView.settings.allowContentAccess = false
webView.settings.allowFileAccess = false
webView.settings.allowFileAccessFromFileURLs= false
webView.settings.allowUniversalAccessFromFileURLs= false
// In case the contents to be displayed are generated or saved locally
webView.settings.blockNetworkLoads = true
webView.settings.javaScriptCanOpenWindowsAutomatically= false
webView.settings.mixedContentMode = false
webView.settings.safeBrowsingEnabled = true

It is also recommended to make sure that debugging is disabled on the
WebViews using the following code:

webView.webContentsDebuggingEnabled = false

Finally, using third-party code such as dynamic JavaScript code within a
WebView could allow malicious users to execute arbitrary code. Therefore, it
is recommended to be sure to check of all external scripts that are loaded by
the WebView.

References
• https://labs.mwrinfosecurity.com/blog/adventures-with-android-

webviews/

• https://developer.android.com/training/articles/security-

tips.html#WebView

• https://commons.apache.org/proper/commons-

lang/apidocs/org/apache/commons/lang3/StringEscapeUtils.html

• https://owasp.org/www-project-enterprise-security-api/

Identification Code: GL-016 v.01 | Date of entry into force: 12.06.2023
Document Title: Secure Guideline Android

Internal distributions
The content of the present document belongs to the NEXI Group. All rights reserved.
Unauthorized distribution of this document outside the NEXI Group is forbidden.

 Page 71 of 78

 This content is classified as Internal

• https://developer.android.com/reference/kotlin/android/webkit/WebS

ettings

3.3.33 PROTECT AGAINST LOG DISCLOSURE

Requirement ID ID-001

Priority High

Description It's advisable not to use log functions in production.

In fact, logs can be easily accessed by malicious users, who could then get
sensitive information from them.

The information considered critical or that could allow access to additional
personal data are the following:

• Username

• Authentication token o password

• Application logs or debugging information

• Personal and confidential information (e.g., personal data, payment

data)

• Device identification data (e.g., IMEI, UDID)

Android Minimize the usage of standard Android features provided by the Log class
and check that confidential information is not leaked in log files.

Log files, can be accessible from other apps in case of devices with root
privileges, and also via USB debug on non-rooted devices using the "adb"
tool with a smartphone linked to a PC:

adb logcat

Avoid invoking methods that print the stacktrace in case of an exception.

Another way to mitigate the problem of logging sensitive information without
affecting the ability to distinguish the identifiers is to use a different
representation of the username, such as a secure hash (e.g., SHA-256). This
way, even if attackers are able to access the logs, they will not get any useful
information on the actual username.

Identification Code: GL-016 v.01 | Date of entry into force: 12.06.2023
Document Title: Secure Guideline Android

Internal distributions
The content of the present document belongs to the NEXI Group. All rights reserved.
Unauthorized distribution of this document outside the NEXI Group is forbidden.

 Page 72 of 78

 This content is classified as Internal

3.3.34 PROTECT AGAINST SCREENSHOT LEAKAGE

Requirement ID ID-002

Priority Low

Description Private data could be subject to disclosure in case of screenshots taken by
malicious applications or by the operating system itself.

Mobile applications should implement countermeasures to prevent
screenshots that could expose sensitive data when shown in the task
manager.

Android Activities that display private data should be protected from capturing
screenshots.

This can be done using the FLAG_SECURE flag, as shown in the following
example:

class FlagSecureActivity : Activity() {
 public override fun onCreate(savedInstanceState: Bundle?) {
 super.onCreate(savedInstanceState)
 window.setFlags(WindowManager.LayoutParams.FLAG_SECURE,
 WindowManager.LayoutParams.FLAG_SECURE
)
 setContentView(R.layout.main)
 }
}

References
• https://developer.android.com/reference/android/view/WindowMana

ger.LayoutParams.html#FLAG_SECURE

• https://blog.mindedsecurity.com/2021/05/mobile-screenshot-

prevention-cheatsheet.html

3.3.35 PROTECT AGAINST CREDENTIAL THEFT

Requirement ID ID-003

Priority Low

Description In order to learn how user digits, mobile operating systems use the Auto
Correction feature to populate local cache files.

Identification Code: GL-016 v.01 | Date of entry into force: 12.06.2023
Document Title: Secure Guideline Android

Internal distributions
The content of the present document belongs to the NEXI Group. All rights reserved.
Unauthorized distribution of this document outside the NEXI Group is forbidden.

 Page 73 of 78

 This content is classified as Internal

Private data such as usernames and passwords could be cached in those
files and therefore may be accessed by malicious users who have access to
the mobile phone.

Android It is recommended to disable the auto-complete features on text fields that
contain sensitive data, in order to prevent the entered data from being saved
in the system caches.

This can be done in two ways.

Via Kotlin code:

edittext.setInputType(InputType.TYPE_TEXT_FLAG_NO_SUGGESTIONS
)

Or via XML:

android:inputType="textNoSuggestions|textVisiblePassword"

References
• https://developer.android.com/reference/android/text/InputType

• https://developer.android.com/reference/android/widget/TextView#s

etInputType(int)

3.3.36 PROTECT AGAINST CLIPBOARD DATA LEAKAGE

Requirement ID ID-004

Priority Low

Description In the event that the application uses the system clipboard in an unsecured
manner, a potential attacker could, through access to the device or simply
through a malicious application without any particular privilege, access all the
data entered in the clipboard from the application, including sensitive data
and passwords. Furthermore, note that the malicious application would not
need root privileges or special environments to be able to access the system
clipboard.

The mobile operating system clipboard is globally accessible from all
applications. It is not necessary to request any permission or request the user
to access the data within it.

If the clipboard is used to copy private data, it may be accessible to other
applications.

Android It is recommended to disable the copy/paste functionality on text fields that
may contain sensitive data, as the system clipboard could be accessible to

Identification Code: GL-016 v.01 | Date of entry into force: 12.06.2023
Document Title: Secure Guideline Android

Internal distributions
The content of the present document belongs to the NEXI Group. All rights reserved.
Unauthorized distribution of this document outside the NEXI Group is forbidden.

 Page 74 of 78

 This content is classified as Internal

any application installed on the device, making it possible to access the
sensitive data stored.

Starting with Android SDK 11 it is possible to overwrite the copy/paste events
on a text field:

class NoMenuEditText : EditText() {
 private val context: Context? = null
 /**
 * This is a replacement method for the base TextView class method of
the same name.
 * This method is used in the android.widget.Editor hidden class to
determine whether to make the PASTE / REPLACE popup appear when
triggered by the text insertion handler. By returning false, we prevent this
window from opening.
 * @return false
 */
 internal fun canPaste(): Boolean {
 return false
 }

 /**
 * This is a replacement method for the base TextView class method of
the same name.
 * This method is used in the android.widget.Editor hidden class to
determine whether to make the PASTE / REPLACE popup appear when
triggered by the text insertion handler. By returning false, we prevent this
window from opening.
 * @return false
 */
 override fun isSuggestionsEnabled(): Boolean {
 return false
 }
 private fun init() {

this.setCustomSelectionActionModeCallback(ActionModeCallbackIntercept
or())
 // disable long clicks on the field.
 this.isLongClickable = false
 }
 /**
 * Prevents the action bar (the top horizontal bar with the copy, cut,
paste, etc .. functions) from appearing, by intercepting (and interrupting)
the callback that would create it.
 */
 private inner class ActionModeCallbackInterceptor :
ActionMode.Callback {
 private val TAG = NoMenuEditText::class.java.simpleName
 override fun onCreateActionMode(mode: ActionMode, menu: Menu):
Boolean {
 return false
 }
 override fun onPrepareActionMode(mode: ActionMode, menu: Menu):
Boolean {

Identification Code: GL-016 v.01 | Date of entry into force: 12.06.2023
Document Title: Secure Guideline Android

Internal distributions
The content of the present document belongs to the NEXI Group. All rights reserved.
Unauthorized distribution of this document outside the NEXI Group is forbidden.

 Page 75 of 78

 This content is classified as Internal

 return false
 }
 override fun onActionItemClicked(mode: ActionMode, item:
MenuItem): Boolean {
 return false
 }

 override fun onDestroyActionMode(mode: ActionMode) {}
 }
}

References
• https://android--examples.blogspot.com/2016/10/android-disable-

copy-and-paste-in.html

• https://developer.android.com/reference/android/view/View

• https://developer.android.com/reference/android/view/ActionMode.

Callback

• https://developer.android.com/reference/android/widget/TextView#i

sSuggestionsEnabled()

Identification Code: GL-016 v.01 | Date of entry into force: 12.06.2023
Document Title: Secure Guideline Android

Internal distributions
The content of the present document belongs to the NEXI Group. All rights reserved.
Unauthorized distribution of this document outside the NEXI Group is forbidden.

 Page 76 of 78

 This content is classified as Internal

4 CHECKLIST FOR REQUIREMENT ACCEPTANCE

For the acceptance of the requirements, the following criteria are required:

• Have the requirements been clearly explained in chapter 3?

• Have the requirements been numbered and prioritized?

• Does each requirement meet these characteristics?
o Complete: necessary information must not be left out.
o Correct: each requirement must accurately describe the functionality to be implemented.
o Feasible: it must be possible to implement the requirement with the known possibilities and

limitations of the system and the environment.
o Necessary: the requirement must document something that is actually needed by the

customer or by an external requirement, an external interface, or a standard.
o Prioritized: a Priority must be assigned to the requirement in order to indicate the importance

of including it in a specific release of the product.
o Unambiguous: the requirement must be written in a concise, simple manner, in the language

of the user's domain, so that anyone who reads the requirement can give a single
interpretation and different readers reach the same conclusion.

o Verifiable: It must be possible to carry out tests for the requirement in order to verify correct
implementation.

4.1 CHECKLIST

The following table summarizes the set of security requirements to be implemented in the development of
secure software for Android mobile applications:

Category Check to implement

Requiremen
t

Implemente
d

A
u
th

e
n
ti
c
a
ti
o
n

Secure authentication using Keystore and Fingerprint

Secure logout management

Usage of temporary access tokens

Password security requirements

PIN Security requirements

Verify presence of local authentication

Authenticate using Active Directory

Protect from User Enumeration

Protect from bruteforcing

Identification Code: GL-016 v.01 | Date of entry into force: 12.06.2023
Document Title: Secure Guideline Android

Internal distributions
The content of the present document belongs to the NEXI Group. All rights reserved.
Unauthorized distribution of this document outside the NEXI Group is forbidden.

 Page 77 of 78

 This content is classified as Internal

Category Check to implement

Requiremen
t

Implemente
d

Authentication with biometric factors

R
e
v
e
rs

e
 e

n
g
in

e
e
ri

n
g
 p

ro
te

c
ti
o
n

Code obfuscation

Encrypt classes with sensitive code

Limit the usage of whitelist –keep*

Protection against information disclosure via stacktrace

Static resources encryption

Static string encryption

Prevent tampering

Whitebox cryptography

S
e
c
u
ri
ty

 c
h

e
c
k
s
 a

t

ru
n
ti
m

e

Anti-Root controls

Anti-Debugging controls

Anti-Hooking controls

S
e
n
s
it
iv

e
 d

a
ta

m
a
n
a

g
e

m
e
n
t

Encryption of personal data

Avoid use of private embedded data

Secure management of files

U
s
e
r

in
p

u
t
m

a
n
a

g
e

m
e
n
t

Secure implementation of an application PIN Pad

Memory Wiping

Input validation

Usage of prepared statements

Identification Code: GL-016 v.01 | Date of entry into force: 12.06.2023
Document Title: Secure Guideline Android

Internal distributions
The content of the present document belongs to the NEXI Group. All rights reserved.
Unauthorized distribution of this document outside the NEXI Group is forbidden.

 Page 78 of 78

 This content is classified as Internal

Category Check to implement

Requiremen
t

Implemente
d

S
e
c
u
re

c
o
m

m
u

n
ic

a
ti
o
n

w
it
h
 t

h
e
 s

e
rv

e
r

Communication over an encrypted channel

Implement SSL Certificate Pinning

IP
C

m
e
c
h
a
n

is
m

s

IPC interfaces secure management

W
e
b
v
ie

w

m
a
n
a

g
e

m
e

n
t

Webview secure settings

C
o
u
n
te

rm
e

a
s
u
re

s
 t
o

in
fo

rm
a
ti
o
n
 d

is
c
lo

s
u
re

 Protect against log disclosure

Protect against screenshot leakage

Protect against credential theft

Protect against clipboard data leakage

