

Internal distribution
The content of the present document belongs to the NEXI Group. All rights reserved.
Unauthorized distribution of this document outside the NEXI Group is forbidden.

Page 1 of 83

 This content is classified as Internal

[MANDATORY SECURITY] GUIDELINES

GL–018 v.01

SECURE GUIDELINE J2EE

Identification Code: GL-018 v.01 | Date of entry into force: 12.06.2023
Document title: Secure Guideline J2EE

Internal distribution
The content of the present document belongs to the NEXI Group. All rights reserved.

Unauthorized distribution of this document outside the NEXI Group is forbidden. Page 2 of 83

 This content is classified as Internal

COVER

Title

Classification

Document code

Approved by

Approval date

Date of entry into force

UPDATES

Version Date Code Updates

1 12-06-2023 GL-018 v.01 First issue

Mandatory Security Guidelines

GL-018 v.01

Nexi Group CISO

12-06-2023

12-06-2023

Secure Guideline J2EE

Identification Code: GL-018 v.01 | Date of entry into force: 12.06.2023
Document title: Secure Guideline J2EE

Internal distribution
The content of the present document belongs to the NEXI Group. All rights reserved.

Unauthorized distribution of this document outside the NEXI Group is forbidden.

 Page 3 of 83

 This content is classified as Internal

SUMMARY

1 Introduction .. 6

2 Definitions and Abbreviations .. 7

3 Requirements description .. 8

3.1 Authentication .. 8

3.2 Access Control .. 8

3.3 Session Management .. 8

3.4 Data Protection - Cryptography ... 9

3.5 Audit and Logging ... 9

3.6 Sensitive Data Management ... 9

3.7 Data Validation ... 9

3.8 Error Handling .. 9

3.9 Use of HTTP Headers in Application Security .. 9

3.10 Configuration Management .. 10

4 Requirement specification .. 11

4.1 Requirement specification .. 11

4.2 List of security requirements ... 12

4.3 Requirements description .. 16

4.3.1 Send private information over encrypted channels ... 16

4.3.2 Protect from User Enumeration ... 18

4.3.3 Protection from guessable (dictionary) user account .. 18

4.3.4 Implement a strong password policy ... 19

4.3.5 Avoid authentication bypass for private resources .. 20

4.3.6 Implement a correct password reset method .. 21

4.3.7 Avoid caching sensitive data ... 22

4.3.8 Avoid positive authentication ... 24

4.3.9 Remove application default accounts .. 24

4.3.10 Verify wrong authentication attempts .. 25

4.3.11 Implement a secure password change functionality .. 26

4.3.12 Send private information via POST ... 26

4.3.13 Protect from Path Traversal ... 27

4.3.14 Protect resources from unauthorized access .. 29

4.3.15 Avoid privilege escalation .. 31

Identification Code: GL-018 v.01 | Date of entry into force: 12.06.2023
Document title: Secure Guideline J2EE

Internal distribution
The content of the present document belongs to the NEXI Group. All rights reserved.

Unauthorized distribution of this document outside the NEXI Group is forbidden.

 Page 4 of 83

 This content is classified as Internal

4.3.16 Avoid authorization bypass .. 31

4.3.17 Correctly manage third party code .. 32

4.3.18 Correctly handle Cross Origin (CORS) resources ... 33

4.3.19 Implementing anti automation controls .. 35

4.3.20 Correct use of Websockets .. 36

4.3.21 Build a secure HTTP session .. 38

4.3.22 Set secure attributes for the session cookies .. 39

4.3.23 Renew the HTTP session after successful login ... 40

4.3.24 Protect from Cross Site Request Forgery .. 42

4.3.25 Check the uniqueness of the user’s session ... 44

4.3.26 Isolate session keys ... 46

4.3.27 Implement a correct logout functionality .. 47

4.3.28 Protect client/browser and server communication ... 48

4.3.29 Use standard cryptographic algorithms ... 49

4.3.30 Protect from Padding Oracle attacks ... 51

4.3.31 Secure Random Number implementation ... 53

4.3.32 Correctly manage security events ... 53

4.3.33 Protect log files .. 54

4.3.34 Prevent caching of sensitive data on client side .. 55

4.3.35 Validate user input ... 56

4.3.36 Output encoding .. 59

4.3.37 Use of prepared statements .. 64

4.3.38 Correctly build HTTP requests ... 65

4.3.39 Correctly handle application errors .. 66

4.3.40 Use the X-Frame-Options header.. 67

4.3.41 Use the X-XSS-Protection header ... 69

4.3.42 Use HTTP Strict Transport Security .. 71

4.3.43 Use the Content-Security-Policy header ... 72

4.3.44 Protect the administrative interfaces ... 74

4.3.45 Disable directory listing .. 75

4.3.46 Disable dangerous HTTP methods ... 76

4.3.47 Remove system default accounts .. 76

4.3.48 Remove unused files ... 77

4.3.49 Protect from HTTP Verb Tampering .. 77

4.3.50 Avoid use of private embedded data in HTML code.. 78

4.3.51 Correctly configure extensions handling .. 79

Identification Code: GL-018 v.01 | Date of entry into force: 12.06.2023
Document title: Secure Guideline J2EE

Internal distribution
The content of the present document belongs to the NEXI Group. All rights reserved.

Unauthorized distribution of this document outside the NEXI Group is forbidden.

 Page 5 of 83

 This content is classified as Internal

4.3.52 Use components without know vulnerabilities ... 80

5 Checklist for requirement acceptance .. 80

5.1 Checklist ... 81

Identification Code: GL-018 v.01 | Date of entry into force: 12.06.2023
Document title: Secure Guideline J2EE

Internal distribution
The content of the present document belongs to the NEXI Group. All rights reserved.

Unauthorized distribution of this document outside the NEXI Group is forbidden.

 Page 6 of 83

 This content is classified as Internal

1 INTRODUCTION

The purpose of this document is to describe the security requirements that should be implemented in order to
develop secure web applications using J2EE and Spring.

These requirements originate from the use of standard and internationally recognized methodologies such as

OWASP (The Open Web Application Security Project).

The following references were used during the writing of this document:

• “OWASP Development Guide” – OWASP Foundation

• “OWASP Testing Guide” – OWASP Foundation

• “OWASP Cheat Sheets Series” – OWASP Foundation

• “OWASP Secure Coding Practices” – OWASP Foundation

In particular, the security requirements to be implemented are based on the security tests described in the
OWASP Testing Guide. Those will also be the reference for the subsequent security assessment phase of the
software produced.

The set of requirements to be implemented were divided by analysis area (authentication, authorization, data
validation, etc.), according to the OWASP Testing Guide v4.

Each control to be implemented includes a table that schematically summarizes the following information:

Requirement ID Analysis Area 001

Priority Priority of the requested requirement

Description Description of the requirement to be implemented

Java/J2EE Example of controls to implement using Java / J2EE

Java/Spring Example of controls to implement using Spring specific solutions

Reference for
verification

OWASP reference for verifying the requirement to be implemented

Identification Code: GL-018 v.01 | Date of entry into force: 12.06.2023
Document title: Secure Guideline J2EE

Internal distribution
The content of the present document belongs to the NEXI Group. All rights reserved.

Unauthorized distribution of this document outside the NEXI Group is forbidden.

 Page 7 of 83

 This content is classified as Internal

2 DEFINITIONS AND ABBREVIATIONS

Term Description

XMLHttpRequest
JavaScript object that is used for AJAX asynchronous requests; allows to make HTTP
GET or POST requests to the server application and receive the response without having
to wait for the entire page to be refreshed.

Cross Site Request
Forgery (CSRF o
XSRF)

Attack through which the attacker is able to force the victim to perform actions on the
vulnerable site where he is authenticated, without the victim being aware of it.

Cross Site
Scripting (XSS)

An attack in which the attacker injects HTML / JavaScript code which is then executed in
the victim's browser in the context of the vulnerable site.

UI Redressing

Fraudulent technique that tries to offer the victim a page that displays harmless elements
that trick the user to perform actions with the mouse or to fill in forms.

In reality, these actions are redirected to one or more transparent frames that contain the
pages of a site that is the subject of the attack itself to which the victim user is logged in
(eg Facebook Like or user entry page in an administration interface).

CORS

Cross Origin Resource Sharing. The way in which browsers allow the reading of data
outside the Same Origin Policy.

https://developer.mozilla.org/en-US/docs/Web/HTTP/Access_control_CORS

Identification Code: GL-018 v.01 | Date of entry into force: 12.06.2023
Document title: Secure Guideline J2EE

Internal distribution
The content of the present document belongs to the NEXI Group. All rights reserved.

Unauthorized distribution of this document outside the NEXI Group is forbidden.

 Page 8 of 83

 This content is classified as Internal

3 REQUIREMENTS DESCRIPTION

Below is a brief description of the categories of the requirements:

3.1 AUTHENTICATION

In the field of security, authentication is the process designed to verify the digital identity of whoever is
interacting with the application. The purpose of authentication controls on application users is to uniquely
associate the users with their identity on the system, in order that they can access their data. This also means
preventing access to resources by users who do not have access credentials.

Following are reported some general best practices in addition to the proposed requirements useful for
guaranteeing the security of the application authentication mechanisms:

• Whenever possible, reuse standard authentication services, which have been tested for security.

• It is good practice to use a centralized implementation for all authentication controls, including libraries

used to call external authentication services.

• All authentication checks must fail securely, returning the system to the state prior to the failed request.

Ex. close all files opened during execution and prior to failure.

• All administrative and account management functions should not normally be accessible from the

Internet in the same way a user is authenticated: make this functionality available only from within the

corporate network or via VPN if it is necessary to expose them on the Internet.

• Connections to external systems should be authenticated (do not allow implicit trust to third party

applications).

• The last login (successful or unsuccessful) of a user account must be reported to the user on their

next successful login.

• If you are using third-party code for authentication, carefully inspect the code to make sure it is not

affected by any malicious code.

3.2 ACCESS CONTROL

Access control is the process used to verify that the user who interacts with the application is authorized to
perform the specific CRUD action (Create / Read / Update / Delete).

3.3 SESSION MANAGEMENT

The HTTP protocol used for the communication between the browser and the application is stateless by
definition.

This means that HTTP treats each request as an independent transaction that is unrelated to any previous
request so that the communication consists of independent pairs of request and response.

This property of the protocol makes necessary the creation of a mechanism that allows identifying the state of
a user inside the application.

One solution consists in the use of session cookies or SessionIDs: for each request that the client sends to
the server, the application returns this cookie so that the server is able to bind the requests to the session of
the correct user.

Session identifiers must be unique, not predictable, and hard to reverse engineer. These aspects make
important to use pseudorandom numbers generation algorithms that are cryptographically strong.

Identification Code: GL-018 v.01 | Date of entry into force: 12.06.2023
Document title: Secure Guideline J2EE

Internal distribution
The content of the present document belongs to the NEXI Group. All rights reserved.

Unauthorized distribution of this document outside the NEXI Group is forbidden.

 Page 9 of 83

 This content is classified as Internal

3.4 DATA PROTECTION - CRYPTOGRAPHY

Cryptography is the process of data protection. The purpose of this process is to make any sensitive data not
understandable by a malicious user who has managed to intercept them.

It is important be sure that any sensitive data is protected by encryption performed through the use of standard
algorithms whose robustness is proven.

3.5 AUDIT AND LOGGING

Indicates the set of activities related to the collection and analysis of log data collected in the application and
system log messages.

3.6 SENSITIVE DATA MANAGEMENT

Indicates the management of sensitive data used by the application both at the server side and at the client-
side level.

3.7 DATA VALIDATION

Data validation area represents the most complex part to protect. Indeed, every input and output parameter
could involve critical vulnerabilities and attacks against final users.

It is fundamental to build an application that implements correct input data validation techniques and the
encoding of the output data. This must check the correctness of the variables before interacting with the DB,
web services, file system and operating system.

3.8 ERROR HANDLING

A correct errors handling process allows to report to the user during the interaction with the application. Error
messages that contain too much information can lead to information disclosure about internal flow of the
application, which could be used in a subsequent attack.

3.9 USE OF HTTP HEADERS IN APPLICATION SECURITY

The following HTTP headers have been proposed by W3G and implemented in browsers to improve user
safety while browsing. Their use is strongly recommended unless explicit design choices due to operational
aspects of the application itself.

• HTTP Strict Transport Security (HSTS)

• Public Key Pinning Extension for HTTP (HPKP)

• X-Frame-Options

• X-XSS-Protection

• X-Content-Type-Options

• Content-Security-Policy

• X-Permitted-Cross-Domain-Policies

• Referrer-Policy

• Expect-CT

• Feature-Policy

To learn more about the topic, refer to the following OWASP project:

• https://www.owasp.org/index.php/OWASP_Secure_Headers_Project

Identification Code: GL-018 v.01 | Date of entry into force: 12.06.2023
Document title: Secure Guideline J2EE

Internal distribution
The content of the present document belongs to the NEXI Group. All rights reserved.

Unauthorized distribution of this document outside the NEXI Group is forbidden.

 Page 10 of 83

 This content is classified as Internal

3.10 CONFIGURATION MANAGEMENT

This section presents some suggestions aimed at avoiding problems related to the configuration of the
environment where web applications run rather than problems that may be present in the application code. For
this reason, the suggestions listed may have specific solutions that depend on the specific environment in use.

Identification Code: GL-018 v.01 | Date of entry into force: 12.06.2023
Document title: Secure Guideline J2EE

Internal distribution
The content of the present document belongs to the NEXI Group. All rights reserved.

Unauthorized distribution of this document outside the NEXI Group is forbidden.

 Page 11 of 83

 This content is classified as Internal

4 REQUIREMENT SPECIFICATION

4.1 REQUIREMENT SPECIFICATION

For each requirement stated during the analysis activity, the following aspects were evaluated:

• Difficulty of exploitation by an attacker.

• Technological impact (non-business) in the event that the vulnerability is exploited by an attacker.

• Difficulty of resolution by applying the requirement requested by the customer.

• Priority of intervention in the introduction of the required safety requirement.

Based on the previous aspects, the risk in the event of a hypothetical vulnerability present in the system was
taken into account for each requirement. This risk is given by the product of the probability of the occurrence
of an attack due to the vulnerability and the technological impact from the exploitation of this activity.

The image below shows the risk calculation matrix:

Therefore, the proposed priority of intervention takes into account the risk value in case of vulnerabilities
present in the system, due to the failure to adopt the required security requirements and the difficulty in
satisfying these requirements, which is measured as the effort by the customer in applying all the
countermeasures described within the proposed security requirements.

The table below shows the rules for using the terms used associated with the applicable priority values, in
order to formalize the terminology within the security requirements:

Identification Code: GL-018 v.01 | Date of entry into force: 12.06.2023
Document title: Secure Guideline J2EE

Internal distribution
The content of the present document belongs to the NEXI Group. All rights reserved.

Unauthorized distribution of this document outside the NEXI Group is forbidden.

 Page 12 of 83

 This content is classified as Internal

Term Category Action

Is necessary

Is mandatory
High/Medium Mandatory

Is strongly suggested

Is important to consider
Medium

Not mandatory but it is necessary to
assess the risks in case of non-
implementation

Is suggested

It should be considered
Low

Implementation is not necessary except in
situations of particularly stringent safety
requirements

The terms: "It is strongly recommended / It is important to consider", indicate that the implementation choice
is inherent to business aspects and internal risk analysis that a generic document such as this one cannot
consider; therefore, the final implementation choice is left to the customer.

Finally, since the guidelines are a document that identifies and categorizes risk aspects without contextualizing
specific applications, the end user can justify the failure to implement a specific control by taking the risk of
this choice.

4.2 LIST OF SECURITY REQUIREMENTS

Code Category Name Priority

RU1 4.3.1 Authentication Send private information over encrypted channels High

RU2 4.3.2 Authentication Protect from User Enumeration Medium

RU3 4.3.3 Authentication Protection from guessable (dictionary) user account Low

RU4 4.3.4 Authentication Implement a strong password policy High

RU5 4.3.5 Authentication Avoid authentication bypass for private resources High

RU6 4.3.6 Authentication Implement a correct password reset method High

RU7 4.3.7 Authentication Avoid caching sensitive data Medium

RU8 4.3.8 Authentication Avoid positive authentication High

RU9 4.3.9 Authentication Remove application default accounts High

RU10 4.3.10 Authentication Verify wrong authentication attempts Medium

RU11 4.3.11 Authentication Implement a secure password change functionality High

RU12 4.3.12 Authentication Send private information via POST Medium

RU13 4.3.13 Access Control Protect from Path Traversal High

Identification Code: GL-018 v.01 | Date of entry into force: 12.06.2023
Document title: Secure Guideline J2EE

Internal distribution
The content of the present document belongs to the NEXI Group. All rights reserved.

Unauthorized distribution of this document outside the NEXI Group is forbidden.

 Page 13 of 83

 This content is classified as Internal

RU14 4.3.14 Access Control Protect resources from unauthorized access High

RU15 4.3.15 Access Control Avoid privilege escalation High

RU16 4.3.16 Access Control Avoid authorization bypass High

RU17 4.3.17 Access Control Correctly manage third party code Medium

RU18 4.3.18 Access Control Correctly handle Cross Origin (CORS) resources Medium

RU19 4.3.19 Access Control Implementing anti automation controls Low

RU20 4.3.20 Access Control Correct use of Websockets Medium

RU21 4.3.21
Session

Management
Build a secure HTTP session High

RU22 4.3.22
Session

Management
Set secure attributes for the session cookies High

RU23 4.3.23
Session

Management
Renew the HTTP session after successful login High

RU24 4.3.24
Session

Management
Protect from Cross Site Request Forgery High

RU25 4.3.25
Session

Management
Check the uniqueness of the user’s session High

RU26 4.3.26
Session

Management
Isolate session keys High

RU27 4.3.27
Session

Management
Implement a correct logout functionality Medium

RU28 4.3.28
Data protection -

Encryption
Protect client/browser and server communication Medium

RU29 4.3.29
Data protection -

Encryption
Use standard cryptographic algorithms Medium

RU30 4.3.30
Data protection -

Encryption
Protect from Padding Oracle attacks Medium

RU31 4.3.31
Data protection -

Encryption
Secure Random Number implementation Medium

RU32 4.3.32 Audit and Logging Correctly manage security events Medium

RU33 4.3.33 Audit and Logging Protect log files High

Identification Code: GL-018 v.01 | Date of entry into force: 12.06.2023
Document title: Secure Guideline J2EE

Internal distribution
The content of the present document belongs to the NEXI Group. All rights reserved.

Unauthorized distribution of this document outside the NEXI Group is forbidden.

 Page 14 of 83

 This content is classified as Internal

RU34 4.3.34
Validation of

sensitive data
Prevent caching of sensitive data on client side Medium

RU35 4.3.35
Validation of

sensitive data
Validate user input High

RU36 4.3.36
Validation of

sensitive data
Output encoding High

RU37 4.3.37
Validation of

sensitive data
Use of prepared statements High

RU38 4.3.38
Validation of

sensitive data
Correctly build HTTP requests High

RU39 4.3.39 Error Handling Correctly handle application errors Medium

RU40 4.3.40
Usage of HTTP

headers on
application security

Use the X-Frame-Options header Low

RU41 4.3.41
Usage of HTTP

headers on
application security

Use the X-XSS-Protection header Low

RU42 4.3.42
Usage of HTTP

headers on
application security

Use HTTP Strict Transport Security Low

RU43 4.3.43
Usage of HTTP

headers on
application security

Use the Content-Security-Policy header Low

RU44 4.3.44
Configuration
Management

Protect the administrative interfaces Medium

RU45 4.3.45
Configuration
Management

Disable directory listing High

RU46 4.3.46
Configuration
Management

Disable dangerous HTTP methods Low

RU47 4.3.47
Configuration
Management

Remove system default accounts Medium

RU48 4.3.48
Configuration
Management

Remove unused files Medium

RU49 4.3.49
Configuration
Management

Protect from HTTP Verb Tampering Medium

Identification Code: GL-018 v.01 | Date of entry into force: 12.06.2023
Document title: Secure Guideline J2EE

Internal distribution
The content of the present document belongs to the NEXI Group. All rights reserved.

Unauthorized distribution of this document outside the NEXI Group is forbidden.

 Page 15 of 83

 This content is classified as Internal

RU50 4.3.50
Configuration
Management

Avoid use of private embedded data in HTML code Medium

RU51 4.3.51
Configuration
Management

Correctly configure extensions handling Medium

RU52 4.3.52
Configuration
Management

Use components without know vulnerabilities Medium

Identification Code: GL-018 v.01 | Date of entry into force: 12.06.2023
Document title: Secure Guideline J2EE

Internal distribution
The content of the present document belongs to the NEXI Group. All rights reserved.

Unauthorized distribution of this document outside the NEXI Group is forbidden.

 Page 16 of 83

 This content is classified as Internal

4.3 REQUIREMENTS DESCRIPTION

Below is a detailed description of the required security requirements listed by application categories.

4.3.1 SEND PRIVATE INFORMATION OVER ENCRYPTED CHANNELS

Requirement
ID

AUT-001

Priority High

Description Credentials or, in general, private data exchanged between client and server (such as
authentication cookies), or between web application layers, should always travel over
an encrypted channel.

It is necessary to make sure that private data (e.g. usernames and passwords) are
sent over an encrypted channel (HTTPS).

Furthermore, only HTTP methods such as POST, PUT or PATH should be used to
send credentials. Avoid using the GET method, as it could expose private information
inside log files or browser history.

The failure to use an encrypted channel exposes the application to Man In The Middle
attacks, which could allow an attacker to intercept the traffic and acquire private
information.

References:

• https://www.owasp.org/index.php/Transport_Layer_Protection_Cheat_Sheet

Java/J2EE To ensure that all pages are served via HTTPS, the web.xml configuration can be
edited to make all the pages in the folder /web/secure accessible only via HTTPS, as
shown below:

<security-constraint>
 <web-resource-collection>
 <web-resource-name>Security page</web-resource-name>
 <url-pattern>/web/secure/*</url-pattern>
 </web-resource-collection>
 <user-data-constraint>
 <transport-guarantee>CONFIDENTIAL</transport-guarantee>
 </user-data-constraint>
</security-constraint>

The same result can also be obtained via annotation, as in the following example:

@WebServlet("/web")
@ServletSecurity(@HttpConstraint(transportGuarantee =
TransportGuarantee.CONFIDENTIAL))
public class MyServlet extends HttpServlet {

Identification Code: GL-018 v.01 | Date of entry into force: 12.06.2023
Document title: Secure Guideline J2EE

Internal distribution
The content of the present document belongs to the NEXI Group. All rights reserved.

Unauthorized distribution of this document outside the NEXI Group is forbidden.

 Page 17 of 83

 This content is classified as Internal

 // servlet code...
}

References:

• https://docs.oracle.com/javaee/7/tutorial/security-webtier002.htm

Java/Spring In case Spring Security is used, to be sure that sensitive information travels on an
encrypted channel it is possible to edit the Spring Security configuration file, by
specifying the required protocol through the attribute requires-channel in the element
<intercept-url>, as shown in the following example:

<http auto-config="true" access-denied-page="/auth/denied">
 <intercept-url pattern="/admin/*" access="ROLE_ADMIN" requires-
channel="https" />
 <intercept-url pattern="/user/*" access="ROLE_USER" requires-channel="https"/>
 <intercept-url pattern="/auth/login"
access="IS_AUTHENTICATED_ANONYMOUSLY" requires-channel="https"/>
 <intercept-url pattern="/**" access="IS_AUTHENTICATED_ANONYMOUSLY"
requires-channel="https"/>
 <form-login login-page="/auth/login" authentication-failure-
url="/auth/login?login_error=true" default-target-url="/user"/>
 <logout logout-url="/auth/logout" logout-success-url="/" invalidate-session="true"/>
</http>

Spring also offers support for Java Configuration thus not requiring the creation of any
XML files. In order to force an encrypted channel for all requests, it is possible to use
a configuration as shown in the following extension of the
WebSecurityConfigurerAdapter class:

@Configuration
@EnableWebSecurity
public class SecurityConfig extends WebSecurityConfigurerAdapter {
 @Override
 protected void configure(HttpSecurity http) throws Exception {
 http
 .requiresChannel()
 .anyRequest().requiresSecure();
 // altre configurazioni
 }
}

Reference for
verification

• https://www.owasp.org/index.php/Testing_for_Credentials_Transported_over

_an_Encrypted_Channel_(OTG-AUTHN-001)

• https://www.owasp.org/index.php/Testing_for_Sensitive_information_sent_vi

a_unencrypted_channels_(OTG-CRYPST-003)

Identification Code: GL-018 v.01 | Date of entry into force: 12.06.2023
Document title: Secure Guideline J2EE

Internal distribution
The content of the present document belongs to the NEXI Group. All rights reserved.

Unauthorized distribution of this document outside the NEXI Group is forbidden.

 Page 18 of 83

 This content is classified as Internal

4.3.2 PROTECT FROM USER ENUMERATION

Requirement
ID

AUT-002

Priority Medium

Description An attacker could be able to identify if a username is valid or not for the application by trying
to interact with the authentication system.

This happens if the application replies in two different ways if a username exists or not,
regardless of the password.

Therefore, an application is affected by this vulnerability if, given a valid username and a
wrong password, the system replies with a message like the following:

Login failed for User foo: invalid password

Otherwise, it replies with the following message when the user does not exist on the system:

Login failed for User foo: invalid Account

Be sure that the application does not provide too many details during the authentication
phase and always provide the same generic error message.

In case of a non-existing user on platform, display always the following generic message:

Wrong Credentials

Make sure that the server does not use different response times depending on whether the
user exists or not in authentication process, to prevent an attacker from inferring through
this mechanism, even if unchanged error message is provided, and to make user
enumeration.

Finally, it is important to notice that the login functionality is not the only one that can be
abused to enumerate users of the platform. Another function is, for example, password
recovery.

Reference for
verification

• https://www.owasp.org/index.php/Testing_for_Account_Enumeration_and_Guess

able_User_Account_(OTG-IDENT-004)

• https://www.owasp.org/index.php/Authentication_Cheat_Sheet#Authentication_an

d_Error_Messages

4.3.3 PROTECTION FROM GUESSABLE (DICTIONARY) USER ACCOUNT

Requirement
ID

AUT-003

Priority Low

Identification Code: GL-018 v.01 | Date of entry into force: 12.06.2023
Document title: Secure Guideline J2EE

Internal distribution
The content of the present document belongs to the NEXI Group. All rights reserved.

Unauthorized distribution of this document outside the NEXI Group is forbidden.

 Page 19 of 83

 This content is classified as Internal

Description If the application allows using “simple” passwords (e.g. only numeric ones), then this could
simplify brute forcing attacks on username values.

Generally, it is always suggested to allow the user to choose his own username. If this is not
possible, it is advisable to follow the recommendations reported below.

Best practice recommends to:

• Avoid creating simple and guessable usernames such as Name.Surname or

numeric ones.

• Avoid using public seeds as the username or something that can be easily

reconstructed starting from other information like the tax code.

Finally, it is suggested to implement a secure password policy in order to avoid brute

bruteforce attacks when a valid account is detected (minimum length, containing numbers,

letters, and special characters – see also 4.3.4).

Reference for
verification

• https://www.owasp.org/index.php/Testing_for_Account_Enumeration_and_Guess

able_User_Account_(OTG-IDENT-004)

• https://www.owasp.org/index.php/Testing_for_Weak_or_unenforced_username_p

olicy_(OTG-IDENT-005)

4.3.4 IMPLEMENT A STRONG PASSWORD POLICY

Requirement
ID

AUT-004

Priority High

Description Brute forcing of access credentials consists in trying to guess the password of a user for
which the username is known.

This kind of attack is performed by using automatic tools that, given a username, try to guess
the password making several tries.

A particular case of bruteforcing is the dictionary attack in which the passwords are retrieved
starting from a list of words instead of all possible sequences of characters.

The second method obviously would allow an attacker to reach the result in much less time.

It is necessary to implement a check in the phase of password creation and subsequent
modification that requires the user to choose a password that is strong:

• Length> = 8 characters.

• At least 1 number.

• At least 1 lowercase letter.

• At least 1 uppercase letter.

• At least 1 special character.

Following a sample regular expression (Regexp) implementing a strong password policy:

Identification Code: GL-018 v.01 | Date of entry into force: 12.06.2023
Document title: Secure Guideline J2EE

Internal distribution
The content of the present document belongs to the NEXI Group. All rights reserved.

Unauthorized distribution of this document outside the NEXI Group is forbidden.

 Page 20 of 83

 This content is classified as Internal

^(?=.*\d)(?=.*[a-z])(?=.*[A-Z])(?=.*[-/:-@\[-`]).{8, }$

Java/J2EE The following code example checks that the password has a minimum length of 8
characters, contains at least one number, an alphabetic symbol, and a special character.

public static boolean checkPassword(String password) throws Exception {
 boolean retval = false;
 String regex = "^.*(?=.{8,})(?=.*\\d)(?=.*[a-za-zA-Z])(?=.*[!@#$^%&+=\\?\\.*\\-_]).*$";
 retval = password.matches(regex);
 return retval;
}

It is worth considering that check can also be implemented by using the bean validation that
is part of the J2EE since version 6.

E.g.:

public class Utente {
 @NotNull
 @Pattern(regexp="^.*(?=.{8,})(?=.*\\d)(?=.*[a-za-zA-Z])(?=.*[!@#$^%&+=\\?\\.*\\-
_]).*$")
 private String password;
 ...
}

Reference for
verification

• https://www.owasp.org/index.php/Testing_for_Weak_password_policy_(OTG-

AUTHN-007)

• https://www.owasp.org/index.php/Password_Storage_Cheat_Sheet

4.3.5 AVOID AUTHENTICATION BYPASS FOR PRIVATE RESOURCES

Requirement
ID

AUT-005

Priority High

Description It is mandatory to make sure that access to resources protected by authentication are not
reachable via direct requests from the browser without being previously authenticated.

For every private page that requires authentication the application must check that the
visiting user is authenticated and has a valid session.

Otherwise, it is necessary to redirect him to the login page.

Identification Code: GL-018 v.01 | Date of entry into force: 12.06.2023
Document title: Secure Guideline J2EE

Internal distribution
The content of the present document belongs to the NEXI Group. All rights reserved.

Unauthorized distribution of this document outside the NEXI Group is forbidden.

 Page 21 of 83

 This content is classified as Internal

If the access control is left to a platform specific implementation, it is necessary to make
sure that it verifies the authentication status of the user for each protected resource.

Java/J2EE The aforementioned best practices are valid also for these languages.

Java/Spring Using Spring Security, it's possible to ensure that all requests are authenticated using a
WebSecurityConfig as shown below:

protected void configure(HttpSecurity http) throws Exception {
 http
 .authorizeRequests().anyRequest().authenticated()
 .and()
 .formLogin().loginPage("/login").permitAll();
}

Otherwise, the following XML configuration can be used:

<http>
 <intercept-url pattern="/login.jsp*"
access="IS_AUTHENTICATED_ANONYMOUSLY"/>
 <intercept-url pattern="/**" access="authenticated"/>
 <form-login login-page='/login.jsp' />
</http>

Reference for
verification

• https://www.owasp.org/index.php/Testing_for_Bypassing_Authentication_Schem

a_(OTG-AUTHN-004)

4.3.6 IMPLEMENT A CORRECT PASSWORD RESET METHOD

Requirement
ID

AUT-006

Priority High

Description Password reset systems allow a user to retrieve a forgotten password.

It is important to pay attention to these systems since they are potentially weak, in
particular when they are question based.

Most of the time, indeed, the answers to the questions can be found searching on the web
or using social engineering techniques.

It is advisable to not use such functions in sensitive systems that contain private data.

The following password reset flow is suggested:

• The user access to the Password Reset functionality.

Identification Code: GL-018 v.01 | Date of entry into force: 12.06.2023
Document title: Secure Guideline J2EE

Internal distribution
The content of the present document belongs to the NEXI Group. All rights reserved.

Unauthorized distribution of this document outside the NEXI Group is forbidden.

 Page 22 of 83

 This content is classified as Internal

• The application sends an e-mail to the user: this contains a onetime secret token
to copy and paste that is valid only for a short amount of time.

• If the user has not requested the reset, give him the possibility to notify the abuse.

• Before password’s reset, check the token expiration date and if it is linked with the
proper user.

• If the reset is successful, send a notification e-mail.

It is advisable to log all the procedure server side.

When the password reset method is question based, make sure that the questions are
created by the user himself. The user should create at least 5 questions and 3 of them
should be presented during the password reset phase.

Warn the user to not insert questions that could be easily reconstructed searching on
Internet, such as “what is your tax number?”.

As specified above refers to an SFA (Single-factor authentication) authentication, for 2FA
(Two-factor authentication) refer to external guides in order to be aligned to the involved
Identity Provider policies.

Reference for
verification

• https://www.owasp.org/index.php/Testing_for_weak_password_change_or_rese

t_functionalities_(OTG-AUTHN-009)

• https://www.owasp.org/index.php/Testing_for_Weak_security_question/answer_

(OTG-AUTHN-008)

• https://www.owasp.org/index.php/Forgot_Password_Cheat_Sheet

4.3.7 AVOID CACHING SENSITIVE DATA

Requirement
ID

AUT-007

Priority Medium

Description The caching mechanisms are generally used in order to improve the performance and
speed of client-server communication in case of exchange of static information or data
shared several times.

However, these mechanisms risk allowing the caching of sensitive information returned
by the web pages of applications, such as:

• personal profiles.

• pages with private images.

allowing in fact the saving in the browser used for navigation of the displayed data.

For example, an attacker with physical access to the device used for browsing could use
the "back" button of the browser and navigate backwards through the history, reading and

Identification Code: GL-018 v.01 | Date of entry into force: 12.06.2023
Document title: Secure Guideline J2EE

Internal distribution
The content of the present document belongs to the NEXI Group. All rights reserved.

Unauthorized distribution of this document outside the NEXI Group is forbidden.

 Page 23 of 83

 This content is classified as Internal

viewing the pages that the web application has allowed to cache on the client in previous
browsing sessions of other users.

In order to ensure the greatest possible coverage even by old devices that support version
1.0 of HTTP, it is necessary to implement the following set of directives within the web
server's HTTP responses:

Cache-Control: no-cache, no-store, must-revalidate
Pragma: no-cache
Expires: 0

References:

• https://tools.ietf.org/html/rfc7234#section-5.2

Java/J2EE Below is shown an example of how to programmatically set the header inside a filter:

public void doFilter(ServletRequest request, ServletResponse response, FilterChain
chain) throws IOException, ServletException {
 HttpServletResponse res = (HttpServletResponse)response;
 res.setHeader("Cache-Control", "no-cache, no-store, must-revalidate");
 res.setHeader("Pragma", "no-cache");
 res.setHeader("Expires", "0");
 chain.doFilter(request, response);
}

This filter will then be added to the web.xml in order to be valid for all pages, as showed
below:

<filter>
 <filter-name>CacheControlFilter</filter-name>
 <filter-class>com.org.CacheControlFilter</filter-class>
</filter>

<filter-mapping>
 <filter-name>CacheControlFilter</filter-name>
 <url-pattern>/*</url-pattern>
</filter-mapping>

Java/Spring Spring Security adds by default some headers in order to improve the application security.

For example, these headers are added by default in each response:

Cache-Control: no-cache, no-store, max-age=0, must-revalidate
Pragma: no-cache
Expires: 0

Identification Code: GL-018 v.01 | Date of entry into force: 12.06.2023
Document title: Secure Guideline J2EE

Internal distribution
The content of the present document belongs to the NEXI Group. All rights reserved.

Unauthorized distribution of this document outside the NEXI Group is forbidden.

 Page 24 of 83

 This content is classified as Internal

Below is an example of how to configure these headers:

<http>
 <!-- ... -->
 <headers defaults-disable="true">
 <cache-control />
 </headers>
</http>

Reference for
verification

• https://www.owasp.org/index.php/Testing_for_Browser_cache_weakness_(OTG

-AUTHN-006)

4.3.8 AVOID POSITIVE AUTHENTICATION

Requirement
ID

AUT-008

Priority High

Description In case of failure of the login functionality, it is necessary to guarantee that the default user
is not used as fallback.

This issue could happen when the fail rate of the login function is considered low, it is then
necessary to always use a negative authentication when there are errors during the login
process.

Specifically, in case of errors, the authentication should always be considered
unsuccessful.

Reference for
verification

• https://www.owasp.org/index.php/Testing_for_Bypassing_Authentication_Sche

ma_(OTG-AUTHN-004)

4.3.9 REMOVE APPLICATION DEFAULT ACCOUNTS

Requirement
ID

AUT-009

Priority High

Description Make sure that the applications do not support or use default accounts installed by the
running systems since they could be easily identified by an attacker.

Furthermore, it is necessary that all accounts, especially the administrative ones, respect
the password policy discussed in the dedicated paragraph.

Identification Code: GL-018 v.01 | Date of entry into force: 12.06.2023
Document title: Secure Guideline J2EE

Internal distribution
The content of the present document belongs to the NEXI Group. All rights reserved.

Unauthorized distribution of this document outside the NEXI Group is forbidden.

 Page 25 of 83

 This content is classified as Internal

A malicious user could exploit default credentials to access authenticated features and
gain greater attack surface.

Reference for
verification

https://www.owasp.org/index.php/Testing_for_default_credentials_(OTG-AUTHN-002)

4.3.10 VERIFY WRONG AUTHENTICATION ATTEMPTS

Requirement
ID

AUT-010

Priority Medium

Description Allowing an infinite number of login attempts implies the possibility for an attacker to be able
to carry out bruteforcing attacks, thus allowing him to identify the correct credentials.

The authentication process must disable a user account if the user has inserted a wrong
password for many times.

Make sure that the server does not take different times to respond to authentication
depending on whether the authentication succeeded or went wrong, to prevent an attacker
from inferring information through this mechanism.

Alternative Solution:

After the third wrong login attempt, gradually slow down the server response and after the
third failed attempt ask for a CAPTCHA resolution.

Show an appropriate message to the user during the wait.

Java/Spring One way to make this control in Spring is to implement and register
org.springframework.context.ApplicationListener interface. Then inside the listener, it is
possible to check the returned event by the login attempt.

public class ApplicationEventListener implements
 org.springframework.context.ApplicationListener {
 public void onApplicationEvent(ApplicationEvent event) {
 if (event instanceof AuthenticationFailureBadCredentialsEvent){
 // handle the login event failed
 // (increase the retry counter)
 }else if (event instanceof AuthenticationSuccessEvent) {
 // manage the successful login event
 // reset the attempts counter for the user
 }
 }
}

Identification Code: GL-018 v.01 | Date of entry into force: 12.06.2023
Document title: Secure Guideline J2EE

Internal distribution
The content of the present document belongs to the NEXI Group. All rights reserved.

Unauthorized distribution of this document outside the NEXI Group is forbidden.

 Page 26 of 83

 This content is classified as Internal

Reference for
verification

• https://www.owasp.org/index.php/Testing_for_Weak_lock_out_mechanism_(OTG-

AUTHN-003)

4.3.11 IMPLEMENT A SECURE PASSWORD CHANGE FUNCTIONALITY

Requirement
ID

AUT-011

Priority High

Description The password change process must take place in the authenticated part of the application,
after successful user authentication.

The change password feature must ask for the old password and the new password 2 times
in the same form. This allows to prevent possible vulnerabilities such as Cross Site Request
Forgery:

• https://www.owasp.org/index.php/Cross-Site_Request_Forgery_(CSRF)

or user enumeration:

• https://www.owasp.org/index.php/Testing_for_User_Enumeration_and_Guessable

_User_Account_(OWASP-AT-002)

Before changing the password, the system must verify that the old password is the correct
one and that the two new passwords have the same value.

In the event that concurrent sessions are used, once the password has been changed, it is
advisable to invalidate all active sessions related to the user whose password has been
changed.

Reference for
verification

• https://www.owasp.org/index.php/Testing_for_weak_password_change_or_reset_

functionalities_(OTG-AUTHN-009)

4.3.12 SEND PRIVATE INFORMATION VIA POST

Requirement ID AUT-012

Priority Medium

Description Avoid the use of methods such as GET that can expose sensitive information transported
in log files or in the browser history.

Identification Code: GL-018 v.01 | Date of entry into force: 12.06.2023
Document title: Secure Guideline J2EE

Internal distribution
The content of the present document belongs to the NEXI Group. All rights reserved.

Unauthorized distribution of this document outside the NEXI Group is forbidden.

 Page 27 of 83

 This content is classified as Internal

When using the HTTP protocol, make sure that sensitive or confidential information (such
as username or password) is sent using HTTP methods such as POST, PUT or PATCH.

Sensitive information that is exchanged between client and server or through the various
levels of a web application must not be exposed in clear text in the logs, browser history
and more.

Anyone with access to the logs etc., will be able to acquire the stored data and reuse them
to carry out user impersonation attacks.

Java/Spring Spring Framework provides the @RequestMapping annotation through which it is possible
to indicate the handler which should be delegate, for example to authenticate, and specify
the method that must be used to recall it.

@RequestMapping(value="/Login", method={RequestMethod.POST})
public String handleLogin(){
..
// perform user login
..
}

This ensures that login operations can only be performed using the POST method to
exchange credentials between client and server.

Reference for
verification

• https://www.owasp.org/index.php/Testing_for_Credentials_Transported_over_an

_Encrypted_Channel_(OTG-AUTHN-001)

4.3.13 PROTECT FROM PATH TRAVERSAL

Requirement
ID

AZ-001

Priority High

Description Applications that implement access functionalities to resources such as pdf, xls, html,
must adequately protect themselves from potential path traversal issues.

For example, when the access to a resource is made as the following one:

http://www.esempio.it/leggifile.jsp?file=report.pdf

It is necessary to protect the application from a request like this:

http://www.esempio.it/leggifile.jsp?file=../../../../some dir/some_file

Identification Code: GL-018 v.01 | Date of entry into force: 12.06.2023
Document title: Secure Guideline J2EE

Internal distribution
The content of the present document belongs to the NEXI Group. All rights reserved.

Unauthorized distribution of this document outside the NEXI Group is forbidden.

 Page 28 of 83

 This content is classified as Internal

Failing to implement the correct checks could allow an attacker to access arbitrary files
on the application's filesystem.

It is necessary to approach these cases by keeping the files to be displayed in a specific
folder of the file system, possibly not shared, whose path is well defined.

Make sure that the path constructed to access the file matches the canonical one for the
file.

If this is not possible (for example if the application displays a series of documents to
users) make sure that the user cannot enter the entire path of the file to be viewed. The
best method is to make a white list of the strings that can be entered by the user.

Validate user input by discarding strings that contain at least the "\", "/" or ".." characters.

Finally, a possible alternative to the direct use of filesystems is to save content directly
in a database and then apply the best practices inherent to the specific context to avoid
problems related to SQL Injection.

Java/J2EE Path traversal is an issue that can be prevented by using data validation and encoding.

Data Validation:

Identify the characters that the filename can contain. For example, check the filename
(alphanumeric characters and underscore are admissible) and its extension:

if(!filename.matches(“^[a-z0-9-_]+\\.[a-z0-9]+$”){

 throw SecurityException;

}

If it is necessary to insert one or more directories in the path, it is possible to use multiple
arguments representing a directory, avoiding allowing the '/' or '\' characters
(UNIX/Windows).

In this way, every argument will be validated with/^[a-z0-9-_]+$/

If the file is saved on a remote server, it is important to check its extension using a
whitelist approach.

The second step is about the encoding of the file system access mode. Check if the
absolute path file is expected using a control like the following one:

try{
 String abs=file.getCanonicalFile().getParent()
 if("/path/expected/the/file/is/".equals(abs)==false)
 throw SecurityException;
 }catch(IOException exc){
 ..
 }

Identification Code: GL-018 v.01 | Date of entry into force: 12.06.2023
Document title: Secure Guideline J2EE

Internal distribution
The content of the present document belongs to the NEXI Group. All rights reserved.

Unauthorized distribution of this document outside the NEXI Group is forbidden.

 Page 29 of 83

 This content is classified as Internal

Finally, it is recommended to check if the file will be accessed/written to the expected
directory, by normalizing it to full path and comparing it to the expected full path folder.

Reference for
verification

• https://www.owasp.org/index.php/Testing_Directory_traversal/file_include_(OT

G-AUTHZ-001)

4.3.14 PROTECT RESOURCES FROM UNAUTHORIZED ACCESS

Requirement
ID

AZ-002

Priority High

Description For every specific role inside the application, it is necessary to implement an
authorization control related to the resources. This can avoid the case of users that
access resources to which they are not allowed to.

Furthermore, make sure that non administrative users cannot access resources reserved
only to the administrators: save the accessible URLs with an administrative user and try
to access them with a user that has lower rights.

It is advisable to always check that the account number passed as value inside a request
is linked to the session of the user that is doing the request.

It is necessary to implement a control such that a user can access only the information
related to his own checking account.

A simple test is to memorize the URLs accessible with an administrator user and then
try to access them with a user with lower permissions.

Java/J2EE In addition to custom solutions, some of the J2EE native methods or frameworks can be
used.

Regarding J2EE, the method is: isUserInRole() which allows to perform the check based
on the internal role.

For example, assuming that the functionality is accessible only by an administrative user
of role “Admin”:

doRequest(ServletRequest req, ServletResponse res,
 FilterChain chain){
if(!request.isUserInRole(“Admin”)){
 throw SecurityException;
}else{
 // User is authorized, go on.
}

Identification Code: GL-018 v.01 | Date of entry into force: 12.06.2023
Document title: Secure Guideline J2EE

Internal distribution
The content of the present document belongs to the NEXI Group. All rights reserved.

Unauthorized distribution of this document outside the NEXI Group is forbidden.

 Page 30 of 83

 This content is classified as Internal

If the resources that require a certain role are all in the same folder, you can also use
the controls in configuration to block access to entire directories or resources through
the "auth-constraint" element.

The following example requires the server to check if user's roles is "manager" or
"assistant" to access resources in /orders/ and that the connection is on https:

<security-constraint>
 <web-resource-collection>
 <web-resource-name>SecureOrders</web-resource-name>
 <url-pattern>/orders/*</url-pattern>
 </web-resource-collection>
 <auth-constraint>
 <role-name>assistant</role-name>
 <role-name>manager</role-name>
 </auth-constraint>
 <user-data-constraint>
 <transport-guarantee>CONFIDENTIAL</transport-guarantee>
 </user-data-constraint>
</security-constraint>

Java/Spring To protect access to certain resources in Spring Security, WebSecurityConfig can be
used as shown below, where some pages are accessible to anyone while everything in
admin will be accessible to users of ADMIN role. All other requests generally require
authentication:

protected void configure(HttpSecurity http) throws Exception {
 http
 .authorizeRequests()
 .antMatchers("/resources/**", "/signup", "/about").permitAll()
 .antMatchers("/admin/**").hasRole("ADMIN")
 .anyRequest().authenticated()
 .and()
 // ...
 .formLogin();
}

The same configuration can be done via XML file.

Reference for
verification

• https://www.owasp.org/index.php/Testing_for_Bypassing_Authorization_Sche

ma_(OTG-AUTHZ-002)

• https://www.owasp.org/index.php/Testing_for_Insecure_Direct_Object_Refere

nces_(OTG-AUTHZ-004)

Identification Code: GL-018 v.01 | Date of entry into force: 12.06.2023
Document title: Secure Guideline J2EE

Internal distribution
The content of the present document belongs to the NEXI Group. All rights reserved.

Unauthorized distribution of this document outside the NEXI Group is forbidden.

 Page 31 of 83

 This content is classified as Internal

4.3.15 AVOID PRIVILEGE ESCALATION

Requirement
ID

AZ-003

Priority High

Description It is necessary to implement the resources access model such that the authorization
logic resides only on the server part avoiding providing user’s role information inside
HTTP request variables.

For example, if a user executes the following request to see an order:

POST /utente/vedOrdine.jsp HTTP/1.1
Host: www.example.com
...
gruppoID=grp001&ordineID=0001

In case the application verifies the user membership to a group by using the groupID
parameter, it is important to note that such value is controllable client side and so it is
subjected to the described issue.

Java/J2EE Do not store information about roles or privileges on client-side. The role to which a user
belongs must not be specified in the request but instead must be set in session at the
login time.

Reference for
verification

• https://www.owasp.org/index.php/Testing_for_Privilege_escalation_(OTG-

AUTHZ-003)

4.3.16 AVOID AUTHORIZATION BYPASS

Requirement
ID

AZ-004

Priority High

Description When there are functions that need a specific workflow in order to be authorized (e.g.
Insert PIN1, then PIN2), it must not be possible to directly access the final step without
inserting the PIN1 and PIN2 before. If this happens, an authorization bypass occurs.

Java/J2EE It is advisable to create an application state that defines if the insertion of PIN1 and PIN2
has been successfully done; this state will have to be checked in the next requests.

It is important to correctly analyze the execution flow of the dispositive operations. For
example, to set the new password, it must be present the check of the old one.

Identification Code: GL-018 v.01 | Date of entry into force: 12.06.2023
Document title: Secure Guideline J2EE

Internal distribution
The content of the present document belongs to the NEXI Group. All rights reserved.

Unauthorized distribution of this document outside the NEXI Group is forbidden.

 Page 32 of 83

 This content is classified as Internal

Reference for
verification

• https://www.owasp.org/index.php/Testing_for_Bypassing_Authorization_Sche

ma_(OTG-AUTHZ-002)

• https://www.owasp.org/index.php/Testing_for_the_Circumvention_of_Work_Fl

ows_(OTG-BUSLOGIC-006)

4.3.17 CORRECTLY MANAGE THIRD PARTY CODE

Requirement
ID

AZ-005

Priority Medium

Description The use of third-party code (e.g. JavaScript) could allow the third party to execute
arbitrary code on the users’ browsers. A common attack case includes credential theft
or session cookie theft.

It is advisable to not dynamically load third party contents but import all the JavaScript
files directly on the web site.

It is advisable to check all the external scripts that are loaded on the users’ browsers.

It's suggested to check all external scripts that are loaded in the users' browsers, to
identify which one have access to the applications and to find out if sensitive information
is collected and where it is sent. In this case, if all the important cookies such as
"HttpOnly" are set it is possible to avoid that a script can access cookies set on the user’s
browser.

Java/J2EE It is advisable to import third party JavaScript code directly on the frontend webserver
after a careful review.

Following an example of a secure import:

<SCRIPT Language=Javascript src=”trackingcookie.js”>

It is advisable to not include JavaScript code from third party sites since it can be possible
for an attacker to execute an attack on the current site, compromising the application
that hosts the included JavaScript code.

Potentially insecure example:

<SCRIPT Language=Javascript src=”https://example.com/trackingcookie.js”>

A safety analysis of the third-party site (example.com) is fundamental if only the above
solution can be adopted.

Only if it is not possible to locally mirror the third-party JavaScript libraries, use the
"integrity" attribute for the script tag to ensure that the version of the external library has
not been modified by a malicious actor.

Identification Code: GL-018 v.01 | Date of entry into force: 12.06.2023
Document title: Secure Guideline J2EE

Internal distribution
The content of the present document belongs to the NEXI Group. All rights reserved.

Unauthorized distribution of this document outside the NEXI Group is forbidden.

 Page 33 of 83

 This content is classified as Internal

<script src=”https://analytics.vendor.com/v1.1/script.js”
 integrity=”sha384-
MBO5IDfYaE6c6Aao94oZrIOiC7CGiSNE64QUbHNPhzk8Xhm0djE6QqTpL0HzTUxk”
 crossorigin=”anonymous”></script>

However, keep in mind that this attribute is not yet supported by all modern browsers
and server that exposes these libraries must accept CORS requests.

• https://developer.mozilla.org/en-US/docs/Web/Security/Subresource_Integrity

Reference for
verification

• https://www.owasp.org/index.php/3rd_Party_Javascript_Management_Cheat_

Sheet

• https://www.owasp.org/index.php/Test_business_logic_data_validation_(OTG-

BUSLOGIC-001)

4.3.18 CORRECTLY HANDLE CROSS ORIGIN (CORS) RESOURCES

Requirement
ID

AZ-006

Priority Medium

Description When a read access on a resource is required by a Flash content or by a CORS request,
it is necessary to define a list of allowed sites that can access the requested resource.

In particular, for CORS:

Make sure that the URLs that reply with:

Access-Control-Allow-Origin: *

Or with:

Access-Control-Allow-Origin: [VALUE-FROM-ORIGIN-REQUEST]

Or that simply add the referrer name to the Access-Control-Allow-Origin header, do not
include the sensitive content.

Use Access-Control-Allow-Origin only on a restricted number of URLs and perform the
control on the Origin header checking if it corresponds to a trusted host.

It is worth considering that CORS headers do not block the request but only prevent
reading by the browser. Therefore, it is important to execute the anti CSRF mitigation in
any case.

Identification Code: GL-018 v.01 | Date of entry into force: 12.06.2023
Document title: Secure Guideline J2EE

Internal distribution
The content of the present document belongs to the NEXI Group. All rights reserved.

Unauthorized distribution of this document outside the NEXI Group is forbidden.

 Page 34 of 83

 This content is classified as Internal

Java/Spring Starting from the Spring Framework version 4.2, CORS is natively supported. By default,
Spring does not place constraints on the domains from which requests may arise nor on
the methods that can be used to make CORS requests.

It is possible to enable a controller for CORS requests through the appropriate
@CrossOrigin annotation. For example, the following will only accept CORS requests
from the domain2.com domain:

@CrossOrigin(origins = "http://domain2.com", maxAge = 3600)
@RestController
@RequestMapping("/account")
public class AccountController {
 @RequestMapping("/{id}")
 public Account retrieve(@PathVariable Long id) {
 // ...
 }
}

CORS can also be configured at the application level, rather than on every single
controller, for example through the WebConfig. The following example shown how to
specify the source domain, methods, and that credentials are not required.

Spring4 example:

@Configuration
@EnableWebMvc
public class WebConfig extends WebMvcConfigurerAdapter {
 @Override
 public void addCorsMappings(CorsRegistry registry) {
 registry.addMapping("/api/**")
 .allowedOrigins("http://domain2.com")
 .allowedMethods("PUT", "DELETE")
 .allowCredentials(false).maxAge(3600);
 }
}

Spring5 example:

@Configuration
@EnableWebMvc
public class WebConfig implements WebMvcConfigurer {
 @Override
 public void addCorsMappings(CorsRegistry registry) {
 registry.addMapping("/api/**")
 .allowedOrigins("http://domain2.com")
 .allowedMethods("PUT", "DELETE")
 .allowCredentials(false).maxAge(3600);
 }
}

Identification Code: GL-018 v.01 | Date of entry into force: 12.06.2023
Document title: Secure Guideline J2EE

Internal distribution
The content of the present document belongs to the NEXI Group. All rights reserved.

Unauthorized distribution of this document outside the NEXI Group is forbidden.

 Page 35 of 83

 This content is classified as Internal

If Spring Security is used, the CORS support can be enabled in this way:

@EnableWebSecurity
public class WebSecurityConfig extends WebSecurityConfigurerAdapter {

 @Override
 protected void configure(HttpSecurity http){
 http.cors();
 }

 @Bean
 CorsConfigurationSource corsConfigurationSource() {
 CorsConfiguration config = new CorsConfiguration();
 config.setAllowedOrigins(Arrays.asList("https://example.com"));
 config.setAllowedMethods(Arrays.asList("GET","POST"));
 UrlBasedCorsConfigurationSource source = new
UrlBasedCorsConfigurationSource();
 source.registerCorsConfiguration("/**", config);
 return source;
 }
}

Similarly, the same configuration can be done in XML format.

Reference for
verification

• https://www.owasp.org/index.php/Test_Cross_Origin_Resource_Sharing_(OT

G-CLIENT-007)

• https://www.owasp.org/index.php/Test_RIA_cross_domain_policy_(OTG-

CONFIG-008)

4.3.19 IMPLEMENTING ANTI AUTOMATION CONTROLS

Requirement
ID

AZ-007

Priority Low

Description If it is necessary to implement a functionality that consists in adding data via form (like
contact request or the users’ registration functionality), it is important to implement a
system that limits the automatic use of such functionalities.

It is in fact possible that a malicious user automatically executes multiple requests that
could fill the DB with data or create unexpected excesses of data.

It is therefore strongly recommended to add so-called CAPTCHA systems or throttling
systems that are capable of mitigating these types of attacks.

Identification Code: GL-018 v.01 | Date of entry into force: 12.06.2023
Document title: Secure Guideline J2EE

Internal distribution
The content of the present document belongs to the NEXI Group. All rights reserved.

Unauthorized distribution of this document outside the NEXI Group is forbidden.

 Page 36 of 83

 This content is classified as Internal

Furthermore, if there is a WAF for blocking bots, it is recommended to configure it to
block connections not only via the IP but also via a fingerprint, such as in the case of
bruteforcing:

POST https://www.host.com/path/name/login user=XXXX&pass=????

In any case, please note that the unilateral blocking of the IP can lead to service
continuity problems for legitimate users who use the same IP in NAT mode.

Reference for
verification

• https://www.owasp.org/index.php/Testing_for_Weak_lock_out_mechanism_(O

TG-AUTHN-003)

• https://www.owasp.org/index.php/Test_User_Registration_Process_(OTG-

IDENT-002)

• https://www.owasp.org/index.php/Testing_for_Captcha_(OWASP-AT-012)

4.3.20 CORRECT USE OF WEBSOCKETS

Requirement ID AZ-008

Priority Medium

Description WebSockets are a technology that makes it possible to open an interactive
communication session between the user's browser and a server. Applications are able,
through this API, to send messages to the server and receive event-driven responses
without connection and preamble overhead for each request.

Since WebSockets:

• are not bound by the same original policy and do not perform CORS checks.

• do not need a response header from the server to authorize the action.

From a security perspective, it should be considered as a low-level communication over
HTTP, aside from the possible authentication of the user on the web server.

The server must take precautions to carry out all the authorization checks necessary to
allow the connection by the browser.

Then:

• Check for "Origin" header value which contains the origin of the page that is

attempting to communicate.

• Check for the security of the transmission channel, especially if session cookies

or other sensitive data are exchanged.

• Take care of any user input and validate and encode it to prevent injection

issues.

Identification Code: GL-018 v.01 | Date of entry into force: 12.06.2023
Document title: Secure Guideline J2EE

Internal distribution
The content of the present document belongs to the NEXI Group. All rights reserved.

Unauthorized distribution of this document outside the NEXI Group is forbidden.

 Page 37 of 83

 This content is classified as Internal

• If the client side accepts user input, take care of any user input and validate

and encode it to prevent injection issues.

It is also recommended by the server to expose the protocol version described in RFC
6455 because it is a more recent and secure version than previous versions and is still
supported by all modern browsers.

Java/J2EE J2EE 7 supports WebSockets through the Java API for WebSocket (JSR 356).

However, the controls and considerations made in the previous section remain the
responsibility of the developers.

Java/Spring Spring Security helps to create secure WebSockets starting since version 4. In fact,
authentication and authorization checks can be requested on WebSocket handlers
through a configuration as shown below:

@Configuration
public class WebSocketSecurityConfig extends
AbstractSecurityWebSocketMessageBrokerConfigurer {

 @Override
 protected void configureInbound(MessageSecurityMetadataSourceRegistry
messages) {
 messages
 .nullDestMatcher().authenticated()
 .simpSubscribeDestMatchers("/user/queue/errors").permitAll()
 .simpDestMatchers("/app/**").hasRole("USER")
 .simpSubscribeDestMatchers("/user/**", "/topic/friends/*").hasRole("USER")
 .anyMessage().denyAll();
 }
}

This configuration requires that every message without destination be authenticated,
anyone can subscribe to /user/queue/errors, the subscribe messages to the other two
handlers also require the same role and any other message will be rejected.

The same configuration can also be specified with XML file.

To authenticate requests, WebSocket uses the same information found in HTTP
requests when the connection is created. So, if a user is authenticated to the HTTP
application then his WebSocket requests will also be authenticated.

Moreover, by default from the Spring Framework version 4.1.5, WebSocket messages
are accepted only if they come from the same domain. This ensures Same Origin Policy
also for WebSockets.

References:

Identification Code: GL-018 v.01 | Date of entry into force: 12.06.2023
Document title: Secure Guideline J2EE

Internal distribution
The content of the present document belongs to the NEXI Group. All rights reserved.

Unauthorized distribution of this document outside the NEXI Group is forbidden.

 Page 38 of 83

 This content is classified as Internal

• http://docs.spring.io/spring-

security/site/docs/4.2.3.RELEASE/reference/htmlsingle/#websocket

Reference for
verification

• https://www.owasp.org/index.php/Testing_WebSockets_(OTG-CLIENT-010)

• https://www.owasp.org/index.php/HTML5_Security_Cheat_Sheet#WebSocket

s

4.3.21 BUILD A SECURE HTTP SESSION

Requirement
ID

SM-001

Priority High

Description It is advisable to use cookies as a mechanism to handle the session. It is preferable to not
send session information inside GET requests; use session cookies for this purpose.

Each user cookie shall comply the following properties:

• Unpredictability: it shouldn’t be possible for a user to understand the cookie

generation mechanism.

• Uniqueness: a new cookie must be generated after every user’s authentication.

• Temporary validity: the application must set a session timeout of about 10

minutes.

• Minimum length: at least 30 characters.

In this way, a malicious user will not be able to predict the values of these tokens with the
purpose of impersonating the user connected to the predicted token.

Java/J2EE With Servlet 3.0 specification, it was introduced the possibility to disable URL rewriting
that is the responsible to add the JSESSIONID into the URLs, thus making it sent via GET.

This mode is supported by default in order to make application backward compatibility to
user agents that do not support cookies.

Since modern browsers support this technology, it is advisable to disable URL rewriting
through a configuration like the following to forces cookies to be used exclusively:

<web-app>
 <session-config>
 <tracking-mode>COOKIE</tracking-mode>
 </session-config>
 </web-app>

Or programmatically with a call like the following:

Identification Code: GL-018 v.01 | Date of entry into force: 12.06.2023
Document title: Secure Guideline J2EE

Internal distribution
The content of the present document belongs to the NEXI Group. All rights reserved.

Unauthorized distribution of this document outside the NEXI Group is forbidden.

 Page 39 of 83

 This content is classified as Internal

servletContext.setSessionTrackingModes(EnumSet.of(SessionTrackingMode.cookie));

It should be considered that all these are valid for the application servers that implement
the Servlet 3.0 specification.

References:

• http://docs.oracle.com/javaee/7/api/index.html?javax/servlet/annotation/ServletS

ecurity.html

Java/Spring Spring Security handles this behavior through the disable-url-rewriting HTTP element
attribute:

<http disable-url-rewriting="true">
 ...
</http>

For the sake of completeness, it is worth noting that since Spring Security version 4, the
default value of this attribute is already set to "true".

References:

• http://docs.spring.io/spring-security/site/migrate/current/3-to-4/html5/migrate-3-

to-4-xml.html

Reference for
verification

• https://www.owasp.org/index.php/Testing_for_Session_Management_Schema_(

OTG-SESS-001)

• https://www.owasp.org/index.php/Testing_for_Exposed_Session_Variables_(OT

G-SESS-004)

• https://www.owasp.org/index.php/Session_Management_Cheat_Sheet

4.3.22 SET SECURE ATTRIBUTES FOR THE SESSION COOKIES

Requirement
ID

SM-002

Priority High

Description Cookies are often a key attack vector for malicious users (typically targeting other users)
and the application should always protect them by setting the following attributes for each
cookie:

• Secure (it indicates that the cookie can be exchanged only over secure channels

like HTTPS. This avoids that the cookie can transit over clear connections. Note

Identification Code: GL-018 v.01 | Date of entry into force: 12.06.2023
Document title: Secure Guideline J2EE

Internal distribution
The content of the present document belongs to the NEXI Group. All rights reserved.

Unauthorized distribution of this document outside the NEXI Group is forbidden.

 Page 40 of 83

 This content is classified as Internal

that if you use this attribute, you have to implement the HTTPS protocol within

all the application; otherwise, you will encounter session related problems).

• HttpOnly (it indicates that the cookie is not accessible by client-side scripting

languages like JavaScript. This helps to prevent attacks like XSS that can be

used to steal cookies).

• Domain (it indicates for which domain it is necessary to send the cookie when

the requests are sent. Obviously, setting a too wide value for this attribute means

that the cookie will be sent more often).

• Path (it specifies the URL path for which the cookie is valid. If domain and path

are equals, then the cookie is sent by the client).

• Expires (it indicates the cookie expiration date. It is advisable to make sure that

the cookie does not expire too far and to handle the expiration server side).

The use of these flags allows mitigating client-side attacks such as XSS or the reuse of

cookies.

Java/J2EE Java2EE supports HttpOnly and Secure since version 6 (Servlet class version 3):

• http://java.sun.com/javaee/6/docs/api/javax/servlet/http/Cookie.html#setHttpOn

ly(boolean)

Also, for session cookies (JSESSIONID)

• http://java.sun.com/javaee/6/docs/api/javax/servlet/SessionCookieConfig.html#

setHttpOnly(boolean)

For older versions, it is possible to use a solution in code by rewriting the JSESSIONID
by setting a custom header.

String sessionid = request.getSession().getId();
response.setHeader("SET-COOKIE", "JSESSIONID=" + sessionid + "; secure;
HttpOnly");

Reference for
verification

• https://www.owasp.org/index.php/Testing_for_cookies_attributes_(OTG-SESS-

002)

• https://www.owasp.org/index.php/Session_Management_Cheat_Sheet

4.3.23 RENEW THE HTTP SESSION AFTER SUCCESSFUL LOGIN

Requirement
ID

SM-003

Priority High

Description Session fixation vulnerability happens when the application does not set a new cookie
after the user has been successfully authenticated.

Identification Code: GL-018 v.01 | Date of entry into force: 12.06.2023
Document title: Secure Guideline J2EE

Internal distribution
The content of the present document belongs to the NEXI Group. All rights reserved.

Unauthorized distribution of this document outside the NEXI Group is forbidden.

 Page 41 of 83

 This content is classified as Internal

In this case the attack consists of obtaining a valid session ID (e.g. by connecting to the
application), inducing a user to authenticate himself with that session ID, and then
hijacking the user-validated session by the knowledge of the used session ID.

The application must always set a new session cookie after the user has been
successfully authenticated.

Java/J2EE Servlet 3.1 provides the HttpServletRequest.changeSessionId() method that changes
the session identifier without losing its attributes.

public void doLogin(HttpServletRequest request) {
 request.changeSessionId();
 authenticate(request); // username/password checked here
}

Below, there is a generic example where the old session is invalidated and a new one is
created when credentials are checked (without losing the old session attributes content):

public void doLogin(HttpServletRequest request) {
 HttpSession oldSession = request.getSession(false);
 if (oldSession != null) {
 // create new session if there was an old session
 HttpSession newSession = request.getSession(true);
 Enumeration enumeration = oldSession.getAttributeNames();
 while (enumeration.hasMoreElements()) {
 String name = (String) enumeration.nextElement();
 Object obj = oldSession.getAttribute(name);
 newSession.setAttribute(name, obj);
 }
 oldSession.invalidate();
 }
authenticate(request); // username/password checked here
}

Java/Spring By default, Spring Security prevents Session Fixation issues by renewing the session
identifier value. This protection is active by default and does not need to be specifically
enabled.

The default enabled configuration is as follows:

<session-management session-fixation-protection="migrateSession">

Otherwise, it can be done via Java configuration:

@Configuration
@EnableWebSecurity
public class SecurityConfig extends WebSecurityConfigurerAdapter {
 @Override

Identification Code: GL-018 v.01 | Date of entry into force: 12.06.2023
Document title: Secure Guideline J2EE

Internal distribution
The content of the present document belongs to the NEXI Group. All rights reserved.

Unauthorized distribution of this document outside the NEXI Group is forbidden.

 Page 42 of 83

 This content is classified as Internal

 protected void configure(HttpSecurity http) throws Exception {
 http.sessionManagement()
 .sessionFixation().migrateSession();
 }
}

This way, Spring Security will generate a new session upon login and will retain the
attributes of the old one.

References:

• http://docs.spring.io/spring-

security/site/docs/4.2.3.RELEASE/apidocs/org/springframework/security/config

/annotation/web/configurers/SessionManagementConfigurer.html

Reference for
verification

• https://www.owasp.org/index.php/Testing_for_Session_Fixation_(OTG-SESS-

003)

• https://www.owasp.org/index.php/Session_Management_Cheat_Sheet

4.3.24 PROTECT FROM CROSS SITE REQUEST FORGERY

Requirement ID SM-004

Priority High

Description Each application function that involves a change in the user's status (e.g. password
change, modification/cancellation of personal data, administrative functions, etc.) must
require a unique parameter for the single operation or require a dispositive password
to protect against possible Cross Site Request Forgery attacks.

The most common method to prevent these attacks is the Synchronizer Token.

References:

• https://www.owasp.org/index.php/Cross-

Site_Request_Forgery_(CSRF)_Prevention_Cheat_Sheet

Java/J2EE When user successful make request for a page containing a form whose action
modifies a state, create a cryptographically secure random token, and save it in
session:

private String createToken(Session session){
 String token= java.util.UUID.randomUUID().toString();
 session.setAttribute(“token”,token);
}

Identification Code: GL-018 v.01 | Date of entry into force: 12.06.2023
Document title: Secure Guideline J2EE

Internal distribution
The content of the present document belongs to the NEXI Group. All rights reserved.

Unauthorized distribution of this document outside the NEXI Group is forbidden.

 Page 43 of 83

 This content is classified as Internal

Insert the token in the form as a hidden field:

<input type=”hidden” name=”token” value=”${token}”/>

Finally, when the request is handled by the controller, it will first have to take care of
checking the token presence in request and then the equality with the one stored in
session.

Public void doPost(HttpServletRequest request, HttpServletResponse response) {

if(!request.getSession().getAttribute(“token”).equals(request.getParameter(“token”))){
 throw SecurityException;
 }else{
 // Do action
 }
}

Java/Spring Spring Security provides a CSRF attack protection, which implements the Token
Pattern Synchronizer.

The following example show how to enable CSRF protection via XML file:

<http>
 <!-- ... -->
 <csrf />
</http>

The protection from the CSRF is enabled by default if Java Configuration is used.

It is worth noting that since version 4 of Spring Security, the protection against CSRF
is enabled by default even when using XML configuration, so there is no need to specify
the relative element.

The next step is to include the CSRF token in all those requests that we want to protect
(POST, PUT, PATCH, DELETE) through, for example, the _csrf attribute:

<c:url var="logoutUrl" value="/logout"/>
<form action="${logoutUrl}" method="post">
<input type="submit" value="Log out" />
<input type="hidden" name="${_csrf.parameterName}" value="${_csrf.token}"/>
</form>

In case is needed to protect AJAX or JSON requests, the CSRF token can be included
in a custom header whose name and value can be exchanged via meta tag:

Identification Code: GL-018 v.01 | Date of entry into force: 12.06.2023
Document title: Secure Guideline J2EE

Internal distribution
The content of the present document belongs to the NEXI Group. All rights reserved.

Unauthorized distribution of this document outside the NEXI Group is forbidden.

 Page 44 of 83

 This content is classified as Internal

<html>
<head>
 <meta name="_csrf" content="${_csrf.token}"/>
 <!-- default header name is X-CSRF-TOKEN -->
 <meta name="_csrf_header" content="${_csrf.headerName}"/>
 <!-- ... -->
</head>
<!-- ... -->

These values will then be retrieved via JavaScript to be added to all requests.

To ensure integration with AngularJS, Spring Security implements the Double Submit
Cookie through the CookieCsrfTokenRepository which will write the anti CSRF token
value inside the XSRF-TOKEN cookie (or the _csrf attribute) and then read it from the
custom header X-XSRF-TOKEN:

<http>
 <!-- ... -->
 <csrf token-repository-ref="tokenRepository"/>
</http>
<b:bean id="tokenRepository"
class="org.springframework.security.web.csrf.CookieCsrfTokenRepository"
p:cookieHttpOnly="false"/>

References:

• http://docs.spring.io/spring-security/site/migrate/current/3-to-4/html5/migrate-

3-to-4-xml.html

• http://docs.spring.io/spring-

security/site/docs/4.2.3.RELEASE/reference/htmlsingle/#csrf

Reference for
verification

• https://www.owasp.org/index.php/Testing_for_CSRF_(OTG-SESS-005)

4.3.25 CHECK THE UNIQUENESS OF THE USER’S SESSION

Requirement ID SM-005

Priority High

Description For critical applications, implement a check that verifies if an authenticated user can
open a new session when the active one is not expired yet. If this is possible, keep
track of the event.

http://docs.spring.io/spring-security/site/migrate/current/3-to-4/html5/migrate-3-to-4-xml.html
http://docs.spring.io/spring-security/site/migrate/current/3-to-4/html5/migrate-3-to-4-xml.html

Identification Code: GL-018 v.01 | Date of entry into force: 12.06.2023
Document title: Secure Guideline J2EE

Internal distribution
The content of the present document belongs to the NEXI Group. All rights reserved.

Unauthorized distribution of this document outside the NEXI Group is forbidden.

 Page 45 of 83

 This content is classified as Internal

Also, make sure that the user IP is correlated to his session when accesses application
resources.

Java/J2EE Add the source IP in the session at login time.

request.getSession().setAttribute(“IP”,request.getRemoteAddr());

After that, insert a checking filter to verify that the IP that originated the request is equal
to that saved in session.

public void doFilter(ServletRequest req, ServletResponse res,
 FilterChain chain){
if(req.getSession()!=null && req.getSession().getAttribute(“IP”) != null &&
!req.getSession().getAttribute(“IP”).equals(req.getRemoteAddr()))
 // potential session hijacking, throw loginException
else
 // go on with filtering
}

Java/Spring Spring Security allows controlling how many concurrent sessions are allowed through
the concurrency-control element. By default, Spring does not limit the number of
sessions that can be opened with the same credentials. The example below shows
how to setup it with XML file:

<http ...>
 <session-management>
 <concurrency-control max-sessions="1" />
 </session-management>
</http>

Otherwise, Java configuration can be used as shown below:

@Override
protected void configure(HttpSecurity http) throws Exception {
 http.sessionManagement().maximumSessions(1);
}

While using this feature, must be sure the HttpSessionEventPublisher is configured to
ensure that the Spring Security session registry is notified when a session is destroyed.

<listener>
 <listener-class>
org.springframework.security.web.session.HttpSessionEventPublisher
 </listener-class>

Identification Code: GL-018 v.01 | Date of entry into force: 12.06.2023
Document title: Secure Guideline J2EE

Internal distribution
The content of the present document belongs to the NEXI Group. All rights reserved.

Unauthorized distribution of this document outside the NEXI Group is forbidden.

 Page 46 of 83

 This content is classified as Internal

</listener>

Reference for
verification

• https://www.owasp.org/index.php/Session_Management_Cheat_Sheet#Simu

ltaneous_Session_Logons

4.3.26 ISOLATE SESSION KEYS

Requirement ID SM-006

Priority High

Description It is necessary to avoid a correspondence between session keys used for different
purposes.

If this happens, it could be possible to have authentication or authorization bypasses.

An attacker could take advantage of this to perform session puzzling attacks.

Java/J2EE For example, different session keys must be used for different functionalities. An
example of that is the “Forget username/password?” functionality that must have a
different session key from that of the login one.

Login functionality:

if(session.getAttribute("username") && credentialsOk())
 session.setAttribute("username",userName);
else
 redirectToLoggedIn();

Forgotten password functionality:

if (userExists()){
 session.setAttribute("forgottenPW_Username",userName);
 ..
 sendEmail(session.getAttribute("forgottenPW_Username"));
}

The username value could be overwritten if used for both two functionalities and a
malicious user firstly executes the second one.

Identification Code: GL-018 v.01 | Date of entry into force: 12.06.2023
Document title: Secure Guideline J2EE

Internal distribution
The content of the present document belongs to the NEXI Group. All rights reserved.

Unauthorized distribution of this document outside the NEXI Group is forbidden.

 Page 47 of 83

 This content is classified as Internal

Reference for
verification

• https://www.owasp.org/index.php/Testing_for_Session_puzzling_(OTG-

SESS-008)

4.3.27 IMPLEMENT A CORRECT LOGOUT FUNCTIONALITY

Requirement ID SM-007

Priority Medium

Description To prevent an attacker from being able to reuse a previous session of a user who has
not been able to log out, the logout function must always be present and reachable
from every page of the application.

It is necessary to make sure that the application invalidates the server-side session
and deletes the client-side cookies.

Make sure that the session is invalidated on the server side, for example through calls
to the HttpSession.invalidate() function in Java, when the user logs out or when it
remains inactive for a certain amount of time.

Delete the cookies on the user's browser when the logout page is called up.

Java/J2EE Example:

public void logout(HttpServletRequest request) throws ServletException {
 HttpSession session = request.getSession(false);
 if (session != null) {
 session.invalidate();
 request.logout(); // available only aServlet 3.0
 }
 loggedIn = false;
 // Change current users role/state to not authenticated
 ..
 // Redirect to index page
 ..
}

Java/Spring The example below shows a logout made using the API provided by Spring Security.
In this case, it is checked whether the user is authenticated and, if so, the session
become invalidated, and the user redirected to the login page:

@RequestMapping(value="/logout", method = RequestMethod.GET)
public String logoutPage (HttpServletRequest request, HttpServletResponse
response) {
 Authentication auth = SecurityContextHolder.getContext().getAuthentication();
 if (auth != null){
 new SecurityContextLogoutHandler().logout(request, response, auth);

Identification Code: GL-018 v.01 | Date of entry into force: 12.06.2023
Document title: Secure Guideline J2EE

Internal distribution
The content of the present document belongs to the NEXI Group. All rights reserved.

Unauthorized distribution of this document outside the NEXI Group is forbidden.

 Page 48 of 83

 This content is classified as Internal

 }
 return "redirect:/login";
}

By default, the logout() method will invalidate the session via session.invalidate(), we
recommend to do not change this behavior.

Reference for
verification

• https://www.owasp.org/index.php/Testing_for_logout_functionality_(OTG-

SESS-006)

4.3.28 PROTECT CLIENT/BROWSER AND SERVER COMMUNICATION

Requirement ID CR-001

Priority Medium

Description Data such as session cookies, authorization codes, personal and sensitive data must
be transmitted in encrypted sessions using the TLS protocol. Verify that the server and
client negotiate the use of sufficiently robust ciphers and at the latest available version.

Data protection must also be ensured within the system infrastructure in the exchange
of components and application modules (eg Web Server, Application Server, DB
server).

If this control is not applied, it is possible for users who have access to the same subnet
to carry out man In The Middle attacks.

Refer to section 4.3.1 for examples of how to force communication over HTTPS.

References:

• https://www.owasp.org/index.php/Transport_Layer_Protection_Cheat_Sheet

Java/J2EE Avoid using weak encoding such as Base64 to encode information within cookies.

Communication channels between client-server must be encrypted using the TLS
protocol.

Reference for
verification

• https://www.owasp.org/index.php/Testing_for_Weak_SSL/TLS_Ciphers,_Ins

ufficient_Transport_Layer_Protection_(OTG-CRYPST-001)

• https://www.owasp.org/index.php/Testing_for_Sensitive_information_sent_vi

a_unencrypted_channels_(OTG-CRYPST-003)

Identification Code: GL-018 v.01 | Date of entry into force: 12.06.2023
Document title: Secure Guideline J2EE

Internal distribution
The content of the present document belongs to the NEXI Group. All rights reserved.

Unauthorized distribution of this document outside the NEXI Group is forbidden.

 Page 49 of 83

 This content is classified as Internal

4.3.29 USE STANDARD CRYPTOGRAPHIC ALGORITHMS

Requirement ID CR-002

Priority Medium

Description Applications must use libraries and cryptographic algorithms implementing state of the
art security solutions that are as well recognized by scientific community for their
robustness and security.

Length of the encryption keys must be adequate to the type of the algorithm chosen.

Private or sensitive data handled by the application, saved on a database or file, must
be adequately protected by appropriate access permissions and technical and
organizational measures.

The encryption keys and the authentication certificates must be encrypted and
maintained on a secure application server.

Following the suggested standards.

For the Asymmetric Cryptography (Public Key Encryption) use:

• RSA with key length of 2048bit at minimum

Symmetric Cryptography:

• AES with key length of 256 bit at minimum

Hashing algorithms:

• SHA-256 or higher

Password Hashing:

• PBKDF2, Scrypt, Bcrypt

In the case of creating hashes for storing passwords, add a salt (that is, a random
sequence of bits) to the string on which the hash will be calculated (in fact it will be
hash (password + salt)) to increase the level of complexity and make it safer against
brute force attacks.

The salt must be:

• Long at least 32 or 68 bytes (256 or 512 bits);

• Unique to every generation;

• Generated using a cryptographically secure algorithm (as explained in

paragraph 4.3.29);

References:

• https://www.owasp.org/index.php/Password_Storage_Cheat_Sheet

Identification Code: GL-018 v.01 | Date of entry into force: 12.06.2023
Document title: Secure Guideline J2EE

Internal distribution
The content of the present document belongs to the NEXI Group. All rights reserved.

Unauthorized distribution of this document outside the NEXI Group is forbidden.

 Page 50 of 83

 This content is classified as Internal

Java/J2EE The example below shows the use of PBKDF2 to generate password hash.

public static byte[] hashPassword(final char[] password, final byte[] salt, final int
iterations, final int keyLength) {
 try {
 SecretKeyFactory skf =
SecretKeyFactory.getInstance("PBKDF2WithHmacSHA512");
 PBEKeySpec spec = new PBEKeySpec(password, salt, iterations, keyLength);
 SecretKey key = skf.generateSecret(spec);
 byte[] res = key.getEncoded();
 return res;

 } catch(NoSuchAlgorithmException | InvalidKeySpecException e) {
 throw new RuntimeException(e);
 }
}

Salt must be a random value; the following code can be used to generate it:

public byte[] generateSalt() throws NoSuchAlgorithmException {
 SecureRandom random = SecureRandom.getInstance("SHA1PRNG");
 byte[] salt = new byte[32];
 random.nextBytes(salt);
 return salt;
}

The iterations number must be at least 10,000 and the key length as 256.

Java/Spring Spring Security provides different password hashing solutions. Specifically, it
supports:

• BCrypt: BCryptPasswordEncoder class

• SCrypt: SCryptPasswordEncoder class

• Pbkdf2: Pbkdf2PasswordEncoder class (since version 4.1)

The use of the StandardPasswordEncoder class is not recommended because it
uses SHA-256 for password hashing. Other not recommended encoders are the
classics: Md5PasswordEncoder, Md4PasswordEncoder and ShaPasswordEncoder.

The example below shows how to configure XML to use the BCrypt as password
encoder:

<beans:bean name="bcryptEncoder"
 class="org.springframework.security.crypto.bcrypt.BCryptPasswordEncoder
"/>

<authentication-manager>

Identification Code: GL-018 v.01 | Date of entry into force: 12.06.2023
Document title: Secure Guideline J2EE

Internal distribution
The content of the present document belongs to the NEXI Group. All rights reserved.

Unauthorized distribution of this document outside the NEXI Group is forbidden.

 Page 51 of 83

 This content is classified as Internal

 <authentication-provider>
 <password-encoder ref="bcryptEncoder"/>
 </authentication-provider>
</authentication-manager>

Similarly, in Java configuration:

@Bean
 public PasswordEncoder passwordEncoder() {
 return new BCryptPasswordEncoder();
 }

@Bean
 public DaoAuthenticationProvider authenticationProvider() {
 DaoAuthenticationProvider authenticationProvider = new
DaoAuthenticationProvider();
 authenticationProvider.setPasswordEncoder(passwordEncoder());
 return authenticationProvider;
 }

Reference for
verification

• https://www.owasp.org/index.php/Testing_for_Weak_Encryption_(OTG-

CRYPST-004)

• https://www.owasp.org/index.php/Top_10-2017_A3-

Sensitive_Data_Exposure

• https://www.owasp.org/index.php/Cryptographic_Storage_Cheat_Sheet

4.3.30 PROTECT FROM PADDING ORACLE ATTACKS

Requirement ID CR-003

Priority Medium

Description Padding Oracle attacks leverage the incorrect use of CBC (Chain Block Ciphers)
algorithms. These algorithms are used to guarantee data confidentiality but result to
be inadequate to ensure their integrity.

According to PKCS#7 standard, a string encrypted by the CBC algorithm is decrypted
correctly if the unused bytes of the last block have the number of the unused bytes
as value. This convention is also note as padding and it is used to guarantee that a
plaintext message can be subdivided in an exact number of blocks. The PKCS
standard considers blocks of 8 or 16 bytes.

During the decryption phase, each block is decrypted using a symmetric key algorithm.
Then it is xored with the previous one.

The following image illustrates the decryption process:

Identification Code: GL-018 v.01 | Date of entry into force: 12.06.2023
Document title: Secure Guideline J2EE

Internal distribution
The content of the present document belongs to the NEXI Group. All rights reserved.

Unauthorized distribution of this document outside the NEXI Group is forbidden.

 Page 52 of 83

 This content is classified as Internal

It is possible to interfere with the padding of the last block by editing the last byte of
the penultimate block. In this way, if the data is decrypted and results different from
0x01 or the previous byte, the application will launch the Invalid Padding exception.
By iterating through this process, it will be possible to obtain the initial clear text.

The padding oracle attack allows decrypting any data without knowing the encryption
key. In the same way, it is possible to encrypt any data.

The following resources could be useful to gain more knowledge about the issue:

• http://blog.mindedsecurity.com/2010/10/breaking-net-encryption-with-or-

without.html

• http://www.gdssecurity.com/l/b/2010/09/14/automated-padding-oracle-

attacks-with-padbuster

• http://netifera.com/research/

Java/J2EE The suggested countermeasure against Padding Oracle attacks is known since many
years: authenticated encryption.

Authenticated encryption is a type of encryption that controls both authenticity and
integrity at the same time.

The most used mode is the one called Encrypt-then-MAC (EtM) in which the text is
first encrypted, and the MAC code is generated starting from the ciphertext (which
guarantees a good level of security);

There are some symmetric encryption ways that natively support this feature and are
documented in version 2.30 of the PKCS#11 standard.

The suggested mode is the GCM one for the block ciphers and the CCM one for the
stream ciphers (ex. CKM_AES_GCM and CKM_AES_CCM).

These modes are supported by some of the most common security libraries such as
BouncyCastle and Java version 7.

References:

• https://www.cryptsoft.com/pkcs11doc/STANDARD/pkcs-11v2-30-d1.pdf

Reference for
verification

• https://www.owasp.org/index.php/Testing_for_Padding_Oracle_(OTG-

CRYPST-002)

Identification Code: GL-018 v.01 | Date of entry into force: 12.06.2023
Document title: Secure Guideline J2EE

Internal distribution
The content of the present document belongs to the NEXI Group. All rights reserved.

Unauthorized distribution of this document outside the NEXI Group is forbidden.

 Page 53 of 83

 This content is classified as Internal

4.3.31 SECURE RANDOM NUMBER IMPLEMENTATION

Requirement ID CR-004

Priority Medium

Description The Pseudo Random Number Generators produce a bits sequence that are solely
determined by an initial value called seed.

The resulting sequence of a PRNG "seems" random, it is statistically analogous to
random numbers sequences, but it is reproducible if the seed and the algorithm are
known.

A cryptographic PRNG has the additional property that the output is not predictable since
the seed is not known.

If it is required to generate tokens or sequences of non-predictable values, it is
necessary to use specific cryptographic libraries.

Java/J2EE It is strongly advised to not use the java.util.Random class which is proven to be
predictable. Note that Math.random() is also not recommended because it uses
java.util.Random.

Instead, it is recommend using java.security.SecureRandom when cryptographically
secure random numbers are needed.

SecureRandom random = new SecureRandom();
byte bytes[] = new byte[20];
random.nextBytes(bytes);

Java/Spring Spring Security provides the KeyGenerators class in the Crypto module, which allows
generating random numbers using SecureRandom class.

Reference for
verification

• https://www.owasp.org/index.php/Insecure_Randomness

• https://www.owasp.org/index.php/Cryptographic_Storage_Cheat_Sheet

4.3.32 CORRECTLY MANAGE SECURITY EVENTS

Requirement ID AL-001

Priority Medium

Identification Code: GL-018 v.01 | Date of entry into force: 12.06.2023
Document title: Secure Guideline J2EE

Internal distribution
The content of the present document belongs to the NEXI Group. All rights reserved.

Unauthorized distribution of this document outside the NEXI Group is forbidden.

 Page 54 of 83

 This content is classified as Internal

Description Depending on the application, it could be necessary to log the following events:

• The start and the closing of the application;

• The start and the end of the work session (authenticated users);

• Actions performed by authorized users;

• Invocation of processes or modules external to the application;

• Controls on the data accessed by authenticated users;

• Changes on the configurations of the application;

• Addition/Extraction of removable devices;

• Operations done on the database.

Logs must exclude any sensible information, in other case must be encrypted and
accessible only by the administrator.

Reference for
verification

Manually inspect the code

4.3.33 PROTECT LOG FILES

Requirement ID AL-002

Priority High

Description Log files must not be accessible, edited or deleted by non-authorized users.

Unauthorized access to log files could lead to confidentiality or integrity issues resulting
in data security issues.

Java/J2EE Natively, Java offers the java.util.logging package that provides all the necessary
classes to manage the logs. There are different external libraries that allow to manage
the application logging, for example:

• Log4J;

• Commons logging;

In order to protect log files from log forging problems, it is recommended to validate the
input in order to remove those potentially harmful characters such as / n / r that would
insert a new line in the logs. By inserting new lines in the log files, an attacker would
be able to hide his actions by making it difficult to understand what happened. Refer to
the paragraph 4.3.35 to see examples on how to validate data input.

In addition to the input validation, it is also recommended to encode the string that will
be inserted in the logs if these are to be read, for example, through a browser. Refer
to the paragraph 4.3.36 for examples on how to output data encoding.

References:

Identification Code: GL-018 v.01 | Date of entry into force: 12.06.2023
Document title: Secure Guideline J2EE

Internal distribution
The content of the present document belongs to the NEXI Group. All rights reserved.

Unauthorized distribution of this document outside the NEXI Group is forbidden.

 Page 55 of 83

 This content is classified as Internal

• https://www.owasp.org/index.php/Log_Injection

Reference for
verification

Manually inspect the code

4.3.34 PREVENT CACHING OF SENSITIVE DATA ON CLIENT SIDE

Requirement ID DS-001

Priority Medium

Description Modern browsers, to help users who register to various systems, give the possibility to
memorize passwords and pre-fill the forms with them.

In addition, browsers also provide help in auto-completing forms when they contain fields
that require data that was previously entered by the user.

This data is saved on the hard disk and successively used to repopulate the form
automatically.

This mechanism is called autocomplete and, although it can be disabled by
configuration, it is enabled by default on browsers and can represent a problem for the
user's privacy depending on saved data.

Sensitive data is then available to anyone with legitimate access to the machine - eg.
shared browser in the office/family - or illegitimate - abusive, physical, or remote access
-.

Java/J2EE Since all browsers have the default autocomplete, the value must be turned off in the
form in order to force the browser to not locally store what we consider sensitive data.

The autocomplete attribute, standardized with HTML5, can be defined at the level of the
whole form disabling the autocomplete for all input, as in the following example:

<form action="XXX" method="POST" autocomplete="off" >...</form>

The above code disables auto completion for all form data.

If it is necessary to disable auto-completion for a limited set of inputs, it is possible to
only explicit the attribute in the desired elements.

Example:

<form action="XXX" method="POST" >
...
<input type="text" autocomplete="off" name="credit_card">
...

Identification Code: GL-018 v.01 | Date of entry into force: 12.06.2023
Document title: Secure Guideline J2EE

Internal distribution
The content of the present document belongs to the NEXI Group. All rights reserved.

Unauthorized distribution of this document outside the NEXI Group is forbidden.

 Page 56 of 83

 This content is classified as Internal

</form>

However, modern browsers will always ask the user to store the credentials related to a
login form even if the developers have correctly set autocomplete to off, because is
considered an advantage from the security point of view.

For completeness it must be specified that the browsers give user the possibility to set
a master password to access the saved passwords, but not by default. Despite this, to
avoid caching even on login forms, it is still advisable to keep autocomplete set to off.

Reference for
verification

• https://www.owasp.org/index.php/Testing_for_Vulnerable_Remember_Passw

ord_(OTG-AUTHN-005)

4.3.35 VALIDATE USER INPUT

Requirement ID DV-001

Priority High

Description It is always advisable to prevent attacks as early as possible during request processing
arriving from the user (attacker). Input validation can be used to identify unauthorized
input before it is actually processed by the application.

It is important to use a centralized routine system to validate application input data.
Specify an adequate character set, like UTF-8, for all the input sources.

Every input validation error must be rejected by the application.

Validate the data after a redirect: a malicious user can present malicious contents
circumventing the application logic and all the verifications executed before the redirect.

Every input user data must always be validated before being used by the application. This
control must be implemented on the data input flow at backend level that is on the
application controller classes that regulate the data insertion and modification.

It is recommended to follow the best practices reported below:

• Controls and casting on the type;

• Format controls;

• Controls on characters subset (an email should allow a specific set of characters
and not '<>');

• Control on the maximum length permitted;

Check that the input has a value and a meaning equal to that requested by the application.
Where possible, the best approach consists in using a whitelist of allowable values and
reject the input that is not included inside them.

Identification Code: GL-018 v.01 | Date of entry into force: 12.06.2023
Document title: Secure Guideline J2EE

Internal distribution
The content of the present document belongs to the NEXI Group. All rights reserved.

Unauthorized distribution of this document outside the NEXI Group is forbidden.

 Page 57 of 83

 This content is classified as Internal

If is not possible to use this approach, use regular expressions to make sure that only
allowable characters can be inserted and that the input has a defined length.

In every case, it is necessary to check at least the input type and range (setting a minimum
and maximum length).

It is also important to correctly sanitize:

• Checks null byte (%00)

• Checks for new line characters (%0d,%0a, \r, \n)

Check for sequences such as "dot-dot-slash” (../ or ..\) alterations in the character path In
cases where UTF-8 is supported as an extended character set, use an alternative
representation such as: %c0%ae%c0%ae/.

Furthermore, use canonicalization to protect against double encoding or other forms of
obfuscation attacks.

References:

• http://www.owasp.org/index.php/XSS_(Cross_Site_Scripting)_Prevention_Chea

t_Sheet

• https://www.owasp.org/index.php/Input_Validation_Cheat_Sheet

Java/J2EE Use filters and validators depending on each input parameter as soon as it is used by the
application.

Example of input validation of username:

String name=request.getParameter(“name”);
if(name!=null && !name.matches(“^[:alpha:]{3,40}$”)){
 throw SecurityException;
}

If the expected input is a number, it should be casted to the native type and checked
against the legitimate range.

Example:

try{
 int id=Integer.parseInt(request.getParameter(“id”));

 if(id<0 || id> 999999)
 throw SecurityException;
}catch(NumberFormatException ex){
 throw SecurityException;
}

Identification Code: GL-018 v.01 | Date of entry into force: 12.06.2023
Document title: Secure Guideline J2EE

Internal distribution
The content of the present document belongs to the NEXI Group. All rights reserved.

Unauthorized distribution of this document outside the NEXI Group is forbidden.

 Page 58 of 83

 This content is classified as Internal

Another approach is to use the validation beans that are part of the J2EE since version
6. By this way, the requirements to be respect are defined by annotations. If the data does
not satisfy the requirements, the system will throw an exception.

Example:

public class Utente {
 @NotNull
 @Size(min=3, max=40)
 @Pattern(regexp="^[:alpha:]$")
 private String firstname;

 @NotNull
 @Size(min=1, max=999999)
 private Integer id;
 ...
}

To start the validation, the User instance must be annotated with @Valid when it is used
(for example when passed to the controller as a parameter).

public @ResponseBody String createUser(@Valid Utente utente, BindingResult result,
HttpServletResponse response){
…
}

Java/Spring Spring Framework supports bean validation since version 4.0, in order to validate user
input, it is possible to use annotations as seen in the previous example.

In addition to this approach, it is also possible to use the Validator interface which
represents the classical method used in Spring validation.

References:

• https://docs.spring.io/spring/docs/current/spring-framework-

reference/html/validation.html#validation-beanvalidation

Reference for
verification

• https://www.owasp.org/index.php/Input_Validation_Cheat_Sheet

• https://www.owasp.org/index.php/Testing_for_Reflected_Cross_site_scripting_(

OTG-INPVAL-001)

• https://www.owasp.org/index.php/Testing_for_Stored_Cross_site_scripting_(OT

G-INPVAL-002)

• https://www.owasp.org/index.php/Testing_for_LDAP_Injection_(OTG-INPVAL-

006)

• https://www.owasp.org/index.php/Testing_for_XML_Injection_(OTG-INPVAL-

008)

• https://www.owasp.org/index.php/Testing_for_SSI_Injection_(OTG-INPVAL-

009)

Identification Code: GL-018 v.01 | Date of entry into force: 12.06.2023
Document title: Secure Guideline J2EE

Internal distribution
The content of the present document belongs to the NEXI Group. All rights reserved.

Unauthorized distribution of this document outside the NEXI Group is forbidden.

 Page 59 of 83

 This content is classified as Internal

• https://www.owasp.org/index.php/Testing_for_XPath_Injection_(OTG-INPVAL-

010)

• https://www.owasp.org/index.php/Testing_for_IMAP/SMTP_Injection_(OTG-

INPVAL-011)

• https://www.owasp.org/index.php/Testing_for_Code_Injection_(OTG-INPVAL-

012)

• https://www.owasp.org/index.php/Testing_for_Command_Injection_(OTG-

INPVAL-013)

• https://www.owasp.org/index.php/Testing_for_Buffer_Overflow_(OTG-INPVAL-

014)

4.3.36 OUTPUT ENCODING

Requirement ID DV-002

Priority High

Description It is important to perform data sanitization and data validation (that is the validation done
on the application input data) before that data are shown to the user.

By performing data encoding, it is possible to ensure that vulnerabilities like Stored XSS
cannot interest the application. Attacks of this kind happen when the attacker is able to
insert malicious code inside the database. Then this code is used to attack the user.

It is important to use a standard routine, after having tested it, for each type of output
encoding.

Encode all characters although they are considered safe for the intended interpreter (SQL
interpreter, XML, etc.)

Sanitize all untrusted data output that is passed to a subsequent layer to be interpreted
so that it is not considered a command. Some examples of layers normally used in an
application are:

• Operative System command;

• SQL Query;

• XML;

• LDAP;

References:

• http://www.owasp.org/index.php/XSS_(Cross_Site_Scripting)_Prevention_Chea

t_Sheet

Java/J2EE When a string coming from not secure source must be inserted into HTML output, it
should be encoded according to the Html context.

Below there are some examples of context encoding where user input must be inserted.

• TextNode and attribute that do not contains URL.

Identification Code: GL-018 v.01 | Date of entry into force: 12.06.2023
Document title: Secure Guideline J2EE

Internal distribution
The content of the present document belongs to the NEXI Group. All rights reserved.

Unauthorized distribution of this document outside the NEXI Group is forbidden.

 Page 60 of 83

 This content is classified as Internal

Change all non-alphanumeric values to HtmlEntities (from character to &#xXX;):

public String encode(String input) {
 StringBuffer sb = new StringBuffer();
 for (int i=0; i<input.length(); i++) {
 char c = input.charAt(i);
 sb.append(encodeCharacter(new Character(c)));
 }
 return sb.toString();
}
public String encodeCharacter(Character c) {
 return "&#" + (int)c.charValue() + ";";
}

This function can then be used when the input is included in the response page:

<div><%=encode(request.getParameter("name"))%></div>

Otherwise:

<input type="text" name="id" value="<%=encode(request.getParameter("name"))%>">

• Link and similar (from characters to %XX):

Change all values in URL Encoding (java.net.URLEncoder.encode()):

<a
href="http://Host/?par=<%java.net.URLEncoder.encode(request.getParameter("param"
), "UTF-8")%>">click

It is advisable not to allow the user to control the whole URL of the link, as done in the
previous example, in order to not lead to other security problem.

• JavaScript Context

Create an encoding method and use it for JavaScript strings (from character to \xXX):

public String encode(String input) {
 StringBuffer sb = new StringBuffer();
 for (int i=0; i<input.length(); i++) {
 char c = input.charAt(i);
 sb.append(encodeCharacter(new Character(c)));
 }
 return sb.toString();
}

Identification Code: GL-018 v.01 | Date of entry into force: 12.06.2023
Document title: Secure Guideline J2EE

Internal distribution
The content of the present document belongs to the NEXI Group. All rights reserved.

Unauthorized distribution of this document outside the NEXI Group is forbidden.

 Page 61 of 83

 This content is classified as Internal

public String encodeCharacter(Character c) {
 char ch = c.charValue();
 if (ch == 0x00) return "\\0";
 if (ch == 0x08) return "\\b";
 if (ch == 0x09) return "\\t";
 if (ch == 0x0a) return "\\n";
 if (ch == 0x0b) return "\\v";
 if (ch == 0x0c) return "\\f";
 if (ch == 0x0d) return "\\r";
 if (ch == 0x22) return "\\\"";
 if (ch == 0x27) return "\\'";
 if (ch == 0x5c) return "\\\\";
 ...
 // encode up to 256 with \\xHH
 String temp = Integer.toHexString((int)ch);
 if (ch <= 256) {
 String pad = "00".substring(temp.length());
 return "\\x" + pad + temp.toUpperCase();
 }

 // otherwise encode with \\uHHHH
 String pad = "0000".substring(temp.length());
 return "\\u" + pad + temp.toUpperCase();
}

This function will then be used when user input is added in the JavaScript context:

<script> f="value<%=encode(request.getParameter("value"))%>"
</script>

• Attributes that identify Css styles or Css files:

Create an encoding method and use it for css strings (from characters to \\XX):

 public String encode(String input) {
 StringBuffer sb = new StringBuffer();
 for (int i = 0; i < input.length(); i++) {
 char c = input.charAt(i);
 sb.append(encodeCharacter(new Character(c)));
 }
 return sb.toString();
 }
 public String encodeCharacter(Character c) {
 char ch = c.charValue();

 // encode up to 256 \x syntax
 if (ch <= 256) {
 return "\\" + ch;
 }

Identification Code: GL-018 v.01 | Date of entry into force: 12.06.2023
Document title: Secure Guideline J2EE

Internal distribution
The content of the present document belongs to the NEXI Group. All rights reserved.

Unauthorized distribution of this document outside the NEXI Group is forbidden.

 Page 62 of 83

 This content is classified as Internal

 // otherwise encode with \\HHHHHH
 String temp = Integer.toHexString((int) ch);
 return "\\" + temp.toUpperCase() + " ";
 }

Note 1: JavaScript and CSS contexts refer only to strings. The encoding, however, loses
its meaning if the concatenation with untrusted data takes place outside a JavaScript /
Css string.

Note 2: encoding must be done when the data are concatenated with the Html. The
encoded data must not be subsequently manipulated or could lose the encoding benefits.

Note 3: If you are dealing with XML, the encoding must be done by executing the
transformation specifications to XMLEntities.

Finally, it should be considered that the JSP pages can use the Java Standard Tag Library
(JSTL) library that exposes the <c: out> tag through which it is possible to encode the
output in a secure way. This library is also commonly used in Spring, so more is discussed
in the next paragraph.

Java/Spring Spring provides different solutions to show the output securely within the page.

Java Standard Tag Library

A common way is to use the <c:out> tags, offered by JSTL, within the jsp pages. This tag
performs by default the encoding of potentially harmful characters (for example: <,>, ", ').
We therefore recommend using this tag when information needs to be presented on the
page and the source is considered not secure.

• TextNode: use <c:out>:

<p>
 Hello <c:out value="${request.remoteUser}"/>
</p>

• Link: use <c:url > and <c:param>:

<c:url value="/myAction.do" var="url">
<c:param name="param1" value="${user.fullName}"/>
<c:param name="param2" value="${request.param}"/>
</c:url> Click

Spring Tag Library

In addition to the JSTL, Spring provides some custom tags that facilitate data binding and
can be used together with the JSTL in the jspc. All the tags available in Spring have an
attribute to enable or disable the HTML escaping, which is false by default. Spring also

Identification Code: GL-018 v.01 | Date of entry into force: 12.06.2023
Document title: Secure Guideline J2EE

Internal distribution
The content of the present document belongs to the NEXI Group. All rights reserved.

Unauthorized distribution of this document outside the NEXI Group is forbidden.

 Page 63 of 83

 This content is classified as Internal

provides the form tag library which offers tags that facilitate the management of forms
and, unlike generic tags, have the HTML escaping set to true by default.

It is therefore recommend the use of form library tags for rendering external input.

If the usage of generic tags is needed, to make sure that the HTML characters are
escaped, put a configuration as shown below in the web.xml that enables the escaping
for all the tags at the application level.

<context-param>
<param-name>defaultHtmlEscape</param-name>
<param-value>true</param-value>
</context-param>

It is also possible to enable escaping it at the specific page level through the following tag
(add it at the top of the page):

<spring:htmlEscape defaultHtmlEscape="true" />

Otherwise, the latest option is to enable HTML escaping for the single tag by acting on its
attribute.

Thymeleaf

Thymeleaf is a Java template engine that integrates perfectly with Spring and introduces
some attributes populated at runtime with the values taken from the model. This engine
offers by default the escaping in HTML context.

Below there is an example of Thymeleaf usage, where if the user is authenticated, a
button is presented to logout and the user's name is written on the page. If the user's
name contained characters that were not allowed, they would be encoded:

<div th:if="${#httpServletRequest.remoteUser != null}">
 <form class="navbar-form pull-right" th:action="@{/logout}" method="post">
 <input type="submit" value="Log out" />
 </form>
 <p class="navbar-text pull-right" th:text="${#httpServletRequest.remoteUser}">
 sample_user
 </p>
</div>

Programmatic approach

If it's needed to encode in a controller class instead of view page, you can use the
org.springframework.web.util.HtmlUtils.htmlEscape()method.

Reference for
verification

• https://www.owasp.org/index.php/Testing_for_Stored_Cross_site_scripting_(OT

G-INPVAL-002)

Identification Code: GL-018 v.01 | Date of entry into force: 12.06.2023
Document title: Secure Guideline J2EE

Internal distribution
The content of the present document belongs to the NEXI Group. All rights reserved.

Unauthorized distribution of this document outside the NEXI Group is forbidden.

 Page 64 of 83

 This content is classified as Internal

• https://www.owasp.org/index.php/Testing_for_Reflected_Cross_site_scripting_(

OTG-INPVAL-001)

4.3.37 USE OF PREPARED STATEMENTS

Requirement ID DV-003

Priority High

Description The application is affected by SQL Injection vulnerabilities when it uses non-validated
user’s input to make queries on the database.

It is mandatory to not use strings concatenation with input data to create the queries, but
always use prepared statements when it is necessary to make queries using input data
provided by the user. This allows to have an automatic escape of all the characters that
are potentially harmful in SQL.

In this way, the SQL command logic is separated from the passed data.

The user through which the application makes database operations must have the lowest
privileges possible and access only to the information strictly needed.

In-depth analysis:

• http://www.owasp.org/index.php/SQL_Injection_Prevention_Cheat_Sheet

Java/J2EE Use, where the DBMS makes it available, the prepared statements.

String userId = request.getParameter("userId");
String query = "SELECT * FROM User WHERE userId = ?";
PreparedStatement prepStmt = connection.prepareStatement(query);
prepStmt.setString(1, userId);
ResultSet rs = prepStmt.executeQuery();

Prepared statements separate data from the SQL query, making it impossible to inject
SQL commands.

Of course, untrusted values must not be concatenated in the template query, otherwise
SQL Injection problems will still be present.

Java/Spring Moreover, Spring Framework provides the jdbcTemplate class which use prepared
statements by default, avoiding SQL injection problem.

Example:

int countOfActorsNamedJoe = this.jdbcTemplate.queryForObject(
 "select count(*) from t_actor where first_name = ?", Integer.class, "Joe");

Identification Code: GL-018 v.01 | Date of entry into force: 12.06.2023
Document title: Secure Guideline J2EE

Internal distribution
The content of the present document belongs to the NEXI Group. All rights reserved.

Unauthorized distribution of this document outside the NEXI Group is forbidden.

 Page 65 of 83

 This content is classified as Internal

Reference for
verification

• https://www.owasp.org/index.php/SQL_Injection_Prevention_Cheat_Sheet#Esc

aping_Dynamic_Queries

• https://www.owasp.org/index.php/Testing_for_SQL_Injection_(OTG-INPVAL-

005)

4.3.38 CORRECTLY BUILD HTTP REQUESTS

Requirement ID DV-004

Priority High

Description When a value like a URL has to be validated, it must be parsed and then check all parts
which will be used from application.

The URLs related to the HTTP protocol are like this:

protocol://username:password@host.name.ltd[:port]/pathName[pathInfo]/?queryString#
URLFragment

URL parsing is not a trivial task, and it is strongly related to the charset and to how the
layer handles specific values.

At this time, the object instantiated by the URL parsing can be described by the following
attributes:

• origin: protocol, hostname and port (ex. https://www.example.com:8080);

• protocol: the protocol;

• username: the username as described before;

• password: the password as described before;

• host: the host consists in hostname and port;

o hostname: the hostname as described before;

o port: the port as described before;

• pathname: the pathname as described before;

• search: the query string including the character “?”

• hash: the URL fragment including the character “#”

The developer has to care about the validation and the eventual additional parsing of the
URL single components that are needed by the source code.

In addition, it is important to make particular attention when the protocol is checked.

Identification Code: GL-018 v.01 | Date of entry into force: 12.06.2023
Document title: Secure Guideline J2EE

Internal distribution
The content of the present document belongs to the NEXI Group. All rights reserved.

Unauthorized distribution of this document outside the NEXI Group is forbidden.

 Page 66 of 83

 This content is classified as Internal

Due to the format complexity, it is strongly suggested to use a semantic whitelist
approach.

To prevent Server-Side Request Forgery attacks, if part of the new URL can be tampered
from external inputs, perform an extensive validation of parsed URL elements.

The following example shows an application that is requesting a URL from user supplied
inputs to perform an internal request:

url=HTTP://XXX/PATH?QUERYSTRING

The URL in the URL parameter should be parsed by using a trustworthy URL parser and
validated in any single element:

proto=HTTP&host=XXX&path=PATH&query=QUERYSTRING

The same could be valid during the construction of POST requests.

Any untrusted input must be validated and escaped in relation to the context where will
be used.

 Java/J2EE It is suggested to use custom URL parsing algorithms that are strongly related to the used
libraries and frameworks. This can prevent attacks like “Server-Side Request Forgery”.

Please refer to paragraph 4.3.35 for examples on how to validate the individual elements
that make up the URL.

Reference for
verification

• https://www.owasp.org/index.php/Testing_for_HTTP_Parameter_pollution_(OT

G-INPVAL-004)

4.3.39 CORRECTLY HANDLE APPLICATION ERRORS

Requirement ID EH-001

Priority Medium

Description The application must be able to report to the users all the errors or exceptions through
appropriate and comprehensible messages. These must not disclose information that
could be used for later attacks.

Error messages must not include:

• Variable names and types;

• SQL strings;

• Source code parts;

• Web server and DB server names and versions;

• Exceptions;

Identification Code: GL-018 v.01 | Date of entry into force: 12.06.2023
Document title: Secure Guideline J2EE

Internal distribution
The content of the present document belongs to the NEXI Group. All rights reserved.

Unauthorized distribution of this document outside the NEXI Group is forbidden.

 Page 67 of 83

 This content is classified as Internal

• Application information;

Error messages must be handled by a generic courtesy page.

Verify that the application does not send confidential information, such as testing code
within the Java Applet or HTML.

Remove all the unnecessary comments and verify that the application does not send
private information via errors.

Java/J2EE Edit web.xml file as shown below:

<error-page>
 <exception-type>java.lang.Exception</exception-type>
 <location>/server_error.jsp</location>
</error-page>
<error-page>
 <error-code>500</error-code>
 <location>/server_error.jsp</location>
</error-page>
<error-page>
 <error-code>404</error-code>
 <location>/file_not_found.jsp</location>
</error-page>

server_error.jsp and file_not_found.jsp could contain the code to log the request that
generated the error.

Finally, it should be considered that the error shown to the user must be as generic as
possible, carrying out a session cleaning and a redirect to the index page.

Java/Spring The general considerations expressed above are valid for this framework, so the error
messages shown must not be contain detailed information on the application and the
technologies in use (such as stack-traces), but must be as generic as possible while the
details must be logged.

Reference for
verification

• https://www.owasp.org/index.php/Testing_for_Error_Code_(OTG-ERR-001)

• https://www.owasp.org/index.php/Testing_for_Stack_Traces_(OTG-ERR-002)

4.3.40 USE THE X-FRAME-OPTIONS HEADER

Requirement ID SH-001

Priority Low

Identification Code: GL-018 v.01 | Date of entry into force: 12.06.2023
Document title: Secure Guideline J2EE

Internal distribution
The content of the present document belongs to the NEXI Group. All rights reserved.

Unauthorized distribution of this document outside the NEXI Group is forbidden.

 Page 68 of 83

 This content is classified as Internal

Description To avoid attacks related to UI-Redressing and based on transparent iframes, it is
suggested to add server side, in the all the responses that involve text/HTML content, the
following header:

X-Frame-Options: SAMEORIGIN

The previous value is recommended if the application uses iframes that contain pages
from the same source, otherwise if the application does not need to use iframes use the
following one:

X-Frame-Options: DENY

References:

• https://developer.mozilla.org/en-US/docs/Web/HTTP/X-Frame-Options

Java/J2EE Below there is an example of how to set the header programmatically within a filter that
is called ClickjackPreventionFilter:

public void doFilter(ServletRequest request, ServletResponse response, FilterChain
chain) throws IOException, ServletException {
 HttpServletResponse res = (HttpServletResponse)response;
 res.setHeader("X-Frame-Options", "SAMEORIGIN");
 chain.doFilter(request, response);
}

This filter should be added to the web.xml to cover all pages:

<filter>
 <filter-name>ClickjackPreventionFilter</filter-name>
 <filter-class>com.org.ClickjackingPreventionFilter</filter-class>
</filter>

<filter-mapping>
 <filter-name>ClickjackPreventionFilter</filter-name>
 <url-pattern>/*</url-pattern>
</filter-mapping>

Java/Spring Spring Security adds by default some headers to help making the application more
secure.

The following header is added by default:

Identification Code: GL-018 v.01 | Date of entry into force: 12.06.2023
Document title: Secure Guideline J2EE

Internal distribution
The content of the present document belongs to the NEXI Group. All rights reserved.

Unauthorized distribution of this document outside the NEXI Group is forbidden.

 Page 69 of 83

 This content is classified as Internal

X-Frame-Options: DENY

The following example shows how to configure the aforementioned header:

<http>
 <!-- ... -->
 <headers>
 <frame-options policy="SAMEORIGIN" />
 </headers>
</http>

Reference for
verification

• https://www.owasp.org/index.php/Clickjacking_Defense_Cheat_Sheet#Defendi

ng_with_X-Frame-Options_Response_Headers

• https://www.owasp.org/index.php/Testing_for_Clickjacking_(OTG-CLIENT-009)

• https://www.owasp.org/index.php/OWASP_Secure_Headers_Project

4.3.41 USE THE X-XSS-PROTECTION HEADER

Requirement ID SH-002

Priority Low

Description The X-XSS-Protection header enables XSS filters implemented in the latest generation
of Chrome, Safari and Internet Explorer 8+ (Firefox has an extension called NoScript that
takes care of this task). Although this header has somehow been superseded by the
Content-Security-Policy header, it is recommended to use it to provide protection against
older user agents that do not support CSP.

The following example enables the anti xss filter and prevents the page from appearing
if a problem is detected:

X-XSS-Protection: 1; mode=block

Limitations:

• Each response must contain the header with the directive since it is a
countermeasure per-page;

• Anti XSS filters must be generic and should be considered as an additional
feature in order to help and not as a substitute of output encoding;

• DOM Based XSS are not always identified by these filters.

Identification Code: GL-018 v.01 | Date of entry into force: 12.06.2023
Document title: Secure Guideline J2EE

Internal distribution
The content of the present document belongs to the NEXI Group. All rights reserved.

Unauthorized distribution of this document outside the NEXI Group is forbidden.

 Page 70 of 83

 This content is classified as Internal

References:

• http://blogs.msdn.com/b/ie/archive/2008/07/02/ie8-security-part-iv-the-xss-

filter.aspx

• http://msdn.microsoft.com/en-us/library/dd565647%28v=vs.85%29.aspx

Java/J2EE Below there is an example of how to set up the header inside a filter:

public void doFilter(ServletRequest request, ServletResponse response, FilterChain
chain) throws IOException, ServletException {
 HttpServletResponse res = (HttpServletResponse)response;
 res.setHeader("X-XSS-Protection", "1; mode=block");
 chain.doFilter(request, response);
}

This filter should be added to the web.xml to cover all pages:

<filter>
 <filter-name>XSSProtectionFilter</filter-name>
 <filter-class>com.org.XSSProtectionFilter</filter-class>
</filter>

<filter-mapping>
 <filter-name>XSSProtectionFilter</filter-name>
 <url-pattern>/*</url-pattern>
</filter-mapping>

Java/Spring Spring Security adds by default some headers to help making the application more
secure.

The following header is added by default:

X-XSS-Protection: 1; mode=block

The following example shows how to configure the aforementioned header:

<http>
 <!-- ... -->
 <headers>
 <xss-protection block="false"/>
 </headers>
</http>

Identification Code: GL-018 v.01 | Date of entry into force: 12.06.2023
Document title: Secure Guideline J2EE

Internal distribution
The content of the present document belongs to the NEXI Group. All rights reserved.

Unauthorized distribution of this document outside the NEXI Group is forbidden.

 Page 71 of 83

 This content is classified as Internal

Reference for
verification

• https://www.owasp.org/index.php/OWASP_Secure_Headers_Project

4.3.42 USE HTTP STRICT TRANSPORT SECURITY

Requirement ID SH-003

Priority Low

Description The HTTP Strict-Transport-Security (HSTS) forces the browser to exclusively do secure
connections (HTTPS) to the server that implements it.

This reduces the impacts related to Man in the Middle attacks.

An HSTS header has two directives:

• max-age: indicates the number of seconds for which the browser must consider

the header valid and then convert any HTTP request into an HTTPS request to

the site.

• includeSubDomains: indicates that subdomains must also be addressed using

HTTPS.

If possible, it is recommended using this header to force the browser to communicate
only via HTTPS.

E.g.:

Strict-Transport-Security: max-age=16070400; includeSubDomains

Java/J2EE The example below shows how to set the header in a filter:

public void doFilter(ServletRequest request, ServletResponse response, FilterChain
chain) throws IOException, ServletException {
 HttpServletResponse res = (HttpServletResponse)response;
 res.setHeader("Strict-Transport-Security", "max-age=16070400;
includeSubDomains");
 chain.doFilter(request, response);
}

This filter should be added to the web.xml to cover all the pages:

Identification Code: GL-018 v.01 | Date of entry into force: 12.06.2023
Document title: Secure Guideline J2EE

Internal distribution
The content of the present document belongs to the NEXI Group. All rights reserved.

Unauthorized distribution of this document outside the NEXI Group is forbidden.

 Page 72 of 83

 This content is classified as Internal

<filter>
 <filter-name>HSTSFilter</filter-name>
 <filter-class>com.org.HSTSFilter</filter-class>
</filter>

<filter-mapping>
 <filter-name>HSTSFilter</filter-name>
 <url-pattern>/*</url-pattern>
</filter-mapping>

Java/Spring Spring Security adds by default some headers that help to improve the application
security.

The following header is added by default:

Strict-Transport-Security: max-age=31536000 ; includeSubDomains

The following example shows how to configure the aforementioned header:

<http>
 <!-- ... -->
 <headers>
 <hsts include-subdomains="true"
 max-age-seconds="31536000" />
 </headers>
</http>

Please note that this header is added by Spring only if the application is using a secure
connection over HTTPS.

Reference for
verification

• https://www.owasp.org/index.php/Test_HTTP_Strict_Transport_Security_(OTG-

CONFIG-007)

4.3.43 USE THE CONTENT-SECURITY-POLICY HEADER

Requirement ID SH-004

Priority Low

Identification Code: GL-018 v.01 | Date of entry into force: 12.06.2023
Document title: Secure Guideline J2EE

Internal distribution
The content of the present document belongs to the NEXI Group. All rights reserved.

Unauthorized distribution of this document outside the NEXI Group is forbidden.

 Page 73 of 83

 This content is classified as Internal

Description The use of the Content-Security-Policy header is strongly suggested because it instruct
the browser to restrictively allow behaviors using a whitelist approach.

Because the CSP has an important impact on the operation of the pages, the directives
that have to be sent to the browser need a fine tuning.

For example, it is possible to completely block all the JavaScript inlines and the evals,
and all the HTML attribute events.

CSP can prevent different categories of attack, such as Cross-Site-Scripting, UI
Redressing, malicious JavaScript code and others.

Limitations:

• Each response must contain the header with the directive since it is a

countermeasure per-page;

References:

• https://developer.mozilla.org/en-US/docs/Web/HTTP/CSP

• http://www.cspplayground.com/resources

Java/J2EE The CSP is allowed at the <Meta> level header even if not all the browsers support it.

In general, a CSP header is defined as follow:

Content-Security-Policy: policy

The policy is created through some directives usage. The following example show how
to give users the ability to include images from any source while restricting access to
media and scripts:

Content-Security-Policy: default-src ‘self’; img-src *; media-src media1.com
media2.com; script-src userscripts.example.com

The example below shows how to programmatically set the header inside a filter:

public void doFilter(ServletRequest request, ServletResponse response, FilterChain
chain) throws IOException, ServletException {
 HttpServletResponse res = (HttpServletResponse)response;
 res.setHeader("Content-Security-Policy", "default-src 'self'; img-src *; media-src
media1.com media2.com; script-src userscripts.example.com");
 chain.doFilter(request, response);
}

Identification Code: GL-018 v.01 | Date of entry into force: 12.06.2023
Document title: Secure Guideline J2EE

Internal distribution
The content of the present document belongs to the NEXI Group. All rights reserved.

Unauthorized distribution of this document outside the NEXI Group is forbidden.

 Page 74 of 83

 This content is classified as Internal

This filter should be added to the web.xml to cover all pages:

<filter>
 <filter-name>CSPHeaderFilter</filter-name>
 <filter-class>com.org.CSPHeaderFilter</filter-class>
</filter>

<filter-mapping>
 <filter-name>CSPHeaderFilter</filter-name>
 <url-pattern>/*</url-pattern>
</filter-mapping>

Java/Spring Spring Security allow to add the header through a configuration as shown in the following
example (or via Java configuration):

<http>
 <!-- ... -->
 <headers>
 <content-security-policy
 policy-directives="script-src 'self'
https://trustedscripts.example.com; object-src https://trustedplugins.example.com;
report-uri /csp-report-endpoint/" />
 </headers>
</http>

Reference for
verification

• https://www.owasp.org/index.php/OWASP_Secure_Headers_Project

• https://www.owasp.org/index.php/Clickjacking_Defense_Cheat_Sheet#Defendi

ng_with_Content_Security_Policy_frame-ancestors_directive

4.3.44 PROTECT THE ADMINISTRATIVE INTERFACES

Requirement ID CM-001

Priority Medium

Description It is necessary to not expose application management consoles or, at least, allow their
access only to local users (Intranet). The access can be implemented internally via an
SSH tunnel or externally through a VPN.

Make sure that default credentials are not used, and robust password policies are
implemented.

This requirement must also be applied to all Jboss management consoles where used.

Identification Code: GL-018 v.01 | Date of entry into force: 12.06.2023
Document title: Secure Guideline J2EE

Internal distribution
The content of the present document belongs to the NEXI Group. All rights reserved.

Unauthorized distribution of this document outside the NEXI Group is forbidden.

 Page 75 of 83

 This content is classified as Internal

Java/J2EE Edit the web.xml file of the administration application with the following values (the same
configuration can be done via annotations):

<security-constraint>
 <web-resource-collection>
 <url-pattern>/*</url-pattern>
 </web-resource-collection>
 <auth-constraint>
 <role-name>admin</role-name>
 </auth-constraint>
 </security-constraint>

It is also recommended to not insert any specific http-method in the access restriction,
since it could lead HTTP method vulnerabilities (HTTP Verb Tampering).

Reference for
verification

• https://www.owasp.org/index.php/Enumerate_Infrastructure_and_Application_

Admin_Interfaces_(OTG-CONFIG-005)

4.3.45 DISABLE DIRECTORY LISTING

Requirement ID CM-002

Priority High

Description The directory listing allows site visitors to view folders content, simply by accessing the
URL of directory via browser if there is no index page or default page. To avoid this, it is
suggested to make sure that the server is correctly configured with the directory listing
disabled.

Java/J2EE Disabling the listing directory may depend on the server used.

For example, on application servers such as Tomcat by editing the web.xml file (in the
most recent versions it should be disabled by default):

<init-param>
 <param-name>listings</param-name>
 <param-value>false</param-value>
</init-param>

Reference for
verification

• https://www.owasp.org/index.php/Test_Application_Platform_Configuration_(O

TG-CONFIG-002)

Identification Code: GL-018 v.01 | Date of entry into force: 12.06.2023
Document title: Secure Guideline J2EE

Internal distribution
The content of the present document belongs to the NEXI Group. All rights reserved.

Unauthorized distribution of this document outside the NEXI Group is forbidden.

 Page 76 of 83

 This content is classified as Internal

4.3.46 DISABLE DANGEROUS HTTP METHODS

Requirement ID CM-003

Priority Low

Description Disable HTTP methods: TRACE, TRACK, PUT, DELETE;

On Apache servers, add the following line for each virtual host in the configuration file to
disable TRACE and TRACK:

RewriteEngine on
RewriteCond %{REQUEST_METHOD} ^(TRACE|TRACK)
RewriteRule .* - [F]

Java/J2EE The following configuration will not make the HTTP TRACE, DELETE, PUT, TRACK
methods available (the same configuration can be done via annotations):

<security-constraint>
 <web-resource-collection>
 <web-resource-name>restricted methods</web-resource-name>
 <url-pattern>/*</url-pattern>
 <http-method>TRACE</http-method>
 <http-method>DELETE</http-method>
 <http-method>TRACK</http-method>
 <http-method>PUT</http-method>
 </web-resource-collection>
 <auth-constraint />
</security-constraint>

Reference for
verification

• https://www.owasp.org/index.php/Test_HTTP_Methods_(OTG-CONFIG-006)

4.3.47 REMOVE SYSTEM DEFAULT ACCOUNTS

Requirement ID CM-004

Priority Medium

Description The application platforms, the databases, and the entire environment on which the
application runs, could be attacked.

Make sure that all the platforms do not generate default and easily guessable accounts.

Identification Code: GL-018 v.01 | Date of entry into force: 12.06.2023
Document title: Secure Guideline J2EE

Internal distribution
The content of the present document belongs to the NEXI Group. All rights reserved.

Unauthorized distribution of this document outside the NEXI Group is forbidden.

 Page 77 of 83

 This content is classified as Internal

It is also recommended to make sure that the infrastructure on which the application
must be installed does not have any active default account.

If there are any default accounts, it is advised to delete them or, if necessary, set a strong
password.

Reference for
verification

• https://www.owasp.org/index.php/Testing_for_default_credentials_(OTG-

AUTHN-002)

4.3.48 REMOVE UNUSED FILES

Requirement ID CM-005

Priority Medium

Description During the software development it happens that the developer creates test or temporary
files that are needed to make tests or for backup.

When the software is in production, it is necessary to make sure that such files are
removed, and that files with the following extensions:

• .old,

• .bak

• Zip archive and similar

are not present if they are not really needed.

These files must be protected from unauthorized access since they usually contain
private or sensitive data.

Reference for
verification

• https://www.owasp.org/index.php/Review_Old,_Backup_and_Unreferenced_Fil

es_for_Sensitive_Information_(OTG-CONFIG-004)

4.3.49 PROTECT FROM HTTP VERB TAMPERING

Requirement ID CM-006

Priority Medium

Description The HTTP Verb Tampering is an attack that leverages the use of HTTP methods
supported by the server to bypass the authentication and authorization mechanisms
implemented by the target application. This could be possible in case the application
handles the access only for specific HTTP methods, so allowing the access through the
use of the other ones.

It is possible to address this problem following these steps:

Identification Code: GL-018 v.01 | Date of entry into force: 12.06.2023
Document title: Secure Guideline J2EE

Internal distribution
The content of the present document belongs to the NEXI Group. All rights reserved.

Unauthorized distribution of this document outside the NEXI Group is forbidden.

 Page 78 of 83

 This content is classified as Internal

• Configure the "deny all" for all methods that are not strictly necessary for the

application operation;

• Ensure that access to resources is controlled indifferently by the method used;

• Disable, if not strictly necessary, the HEAD method;

• Do not accept direct requests to JSP files, but use a controller that uses the

RequestDispatcher.forward() method to send a request to a JSP file;

Java/J2EE The following example show how to properly configure the application to block the
resources access (the same configuration can be done via annotations).

<security-constraint>
 <display-name>Example Security Constraint</display-name>
 <web-resource-collection>
 <web-resource-name>Protected Area</web-resource-name>
 <url-pattern>/security/protected/*</url-pattern>
 </web-resource-collection>
</security-constraint>

It is not correct, to specify methods using the <http-method> tag in the configuration. The
lack of this tag in the security constraint implies that the check will be carried out
regardless of the method used, thus preventing HTTP verb tampering issues.

Reference for
verification

• https://www.owasp.org/index.php/Testing_for_HTTP_Verb_Tampering_(OTG-

INPVAL-003)

4.3.50 AVOID USE OF PRIVATE EMBEDDED DATA IN HTML CODE

Requirement ID CM-007

Priority Medium

Description Anything that the user visualizes on his browser can be read by the user himself by
clicking on “show page HTML source”.

The application should not leak any private information inside the HTML source of the
page.

In particular, consider:

• Test code (commented or not);

• Test data (used or not);

• Comments containing debug data or other private information;

Identification Code: GL-018 v.01 | Date of entry into force: 12.06.2023
Document title: Secure Guideline J2EE

Internal distribution
The content of the present document belongs to the NEXI Group. All rights reserved.

Unauthorized distribution of this document outside the NEXI Group is forbidden.

 Page 79 of 83

 This content is classified as Internal

E.g.:

• Username and password precompiled in a form to access specific layer

• <!-- SELECT * from TableName where col1=XX ... -->

• /* Test User: testUser Pass: testPassword */

Although blurred in some way, all data coming to the browser must be considered as
readable.

Reference for
verification

• https://www.owasp.org/index.php/Review_webpage_comments_and_metadat

a_for_information_leakage_(OTG-INFO-005)

4.3.51 CORRECTLY CONFIGURE EXTENSIONS HANDLING

Requirement ID CM-008

Priority Medium

Description It is suggested to configure the web server in order to do not give read access in case
file requested it's used by the server itself but in some way reachable from the web.

It is recommended to pay particular attention to files requested by the user that have an
extension that is not normally managed by the web server.

Java/J2EE Below there is an example of common extension blocking access made by editing the
web.xml file (the same configuration can be done via annotations)

<security-constraint>
 <web-resource-collection>
 <url-pattern>*.asa</url-pattern>
 <url-pattern>*.bak</url-pattern>
 <url-pattern>*.class</url-pattern>
 <url-pattern>*.inc</url-pattern>
 <url-pattern>*.jar</url-pattern>
 <url-pattern>*.log</url-pattern>
 <url-pattern>*.properties</url-pattern>
 <url-pattern>*.sql</url-pattern>
 <url-pattern>*.zip</url-pattern>
 </web-resource-collection>
 <auth-constraint />
</security-constraint>

Identification Code: GL-018 v.01 | Date of entry into force: 12.06.2023
Document title: Secure Guideline J2EE

Internal distribution
The content of the present document belongs to the NEXI Group. All rights reserved.

Unauthorized distribution of this document outside the NEXI Group is forbidden.

 Page 80 of 83

 This content is classified as Internal

Reference for
verification

• https://www.owasp.org/index.php/Test_File_Extensions_Handling_for_Sensitiv

e_Information_(OTG-CONFIG-003)

4.3.52 USE COMPONENTS WITHOUT KNOW VULNERABILITIES

Requirement ID CM-010

Priority Medium

Description All the software, such as:

• libraries used for a specific functionality

• the framework used to develop

• the DBMS

• the operating system

should be considered safe until a vulnerability is found.

It is strongly suggested, when installing new libraries, to check for known vulnerabilities
and if possible find the version that fixes the vulnerability itself. This way, vulnerabilities
are not introduced due to lack of process.

Implementation It is suggested the adoption of the following rules related to the installation and
maintenance of third-party software:

• Remove unused dependencies, components, files and documentation.

• Use version control and vulnerability presence tools such as Dependency

Check, Retire.js etc.

• Use official repositories and if possible internal repositories to the enterprise to

avoid running into backdoors.

• Download the software on a secure channel.

• Prefer signed packages

• Where it will not be possible to update a component with vulnerabilities consider

the use of the so-called virtual patching, or configure the IPS / IDS system to

detect attacks on the known vulnerability.

Reference for
verification

• https://www.owasp.org/index.php/Top_10-2017_A9-

Using_Components_with_Known_Vulnerabilities

5 CHECKLIST FOR REQUIREMENT ACCEPTANCE

For the acceptance of the requirements, the following criteria are required:

• Have the requirements been clearly explained in chapter 3?

Identification Code: GL-018 v.01 | Date of entry into force: 12.06.2023
Document title: Secure Guideline J2EE

Internal distribution
The content of the present document belongs to the NEXI Group. All rights reserved.

Unauthorized distribution of this document outside the NEXI Group is forbidden.

 Page 81 of 83

 This content is classified as Internal

• Have the requirements been numbered and prioritized?

• Does each requirement meet these characteristics?
o Complete: necessary information must not be left out.
o Correct: each requirement must accurately describe the functionality to be implemented.
o Feasible: it must be possible to implement the requirement with the known possibilities and

limitations of the system and the environment.
o Necessary: the requirement must document something that is actually needed by the

customer or by an external requirement, an external interface, or a standard.
o Prioritized: a Priority must be assigned to the requirement in order to indicate the importance

of including it in a specific release of the product.
o Unambiguous: the requirement must be written in a concise, simple manner, in the language

of the user's domain, so that anyone who reads the requirement can give a single
interpretation and different readers reach the same conclusion.

o Verifiable: It must be possible to carry out tests for the requirement in order to verify correct
implementation.

5.1 CHECKLIST

The following table summarizes the set of security requirements to be implemented in the development of
secure software for J2EE/Spring web applications:

Categor
y

Check to implement

Requiremen
t

Implemente
d

A
u
th

e
n
ti
c
a
ti
o
n

Send private information over encrypted channels

Protect from User Enumeration

Protection from guessable (dictionary) user account

Implement a strong password policy

Avoid authentication bypass for private resources

Implement a correct password reset method

Avoid caching sensitive data

Avoid positive authentication

Remove application default accounts

Verify wrong authentication attempts

Implement a secure password change functionality

Send private information via POST

Identification Code: GL-018 v.01 | Date of entry into force: 12.06.2023
Document title: Secure Guideline J2EE

Internal distribution
The content of the present document belongs to the NEXI Group. All rights reserved.

Unauthorized distribution of this document outside the NEXI Group is forbidden.

 Page 82 of 83

 This content is classified as Internal

Categor
y

Check to implement

Requiremen
t

Implemente
d

A
c
c
e
s
s
 C

o
n
tr

o
l

Protect from Path Traversal

Protect resources from unauthorized access

Avoid privilege escalation

Avoid authorization bypass

Correctly manage third party code

Correctly handle Cross Origin (CORS) resources

Implementing anti automation controls

Correct use of Websockets

S
e
s
s
io

n
 H

a
n
d
lin

g

Build a secure HTTP session

Set secure attributes for the session cookies

Renew the HTTP session after successful login

Protect from Cross Site Request Forgery

Check the uniqueness of the user’s session

Isolate session keys

Implement a correct logout functionality

D
a
ta

 P
ro

te
c
ti
o
n

 -

C
ry

p
to

g
ra

p
h
y

Protect client/browser and server communication

Use standard cryptographic algorithms

Protect from Padding Oracle attacks

Secure Random Number implementation

A
u
d

it
 e

L
o
g
g

in
g

Correctly manage security events

Protect log files

Identification Code: GL-018 v.01 | Date of entry into force: 12.06.2023
Document title: Secure Guideline J2EE

Internal distribution
The content of the present document belongs to the NEXI Group. All rights reserved.

Unauthorized distribution of this document outside the NEXI Group is forbidden.

 Page 83 of 83

 This content is classified as Internal

Categor
y

Check to implement

Requiremen
t

Implemente
d

S
e
n
s
it
iv

e

D
a
ta

H
a
n
d

lin
g

Prevent caching of sensitive data on client side

D
a
ta

 V
a

lid
a
ti
o
n

 Validate user input

Output encoding

Use of prepared statements

Correctly build HTTP requests

E
rr

o
r

H
a
n
d

lin

g

Correctly handle application errors

H
T

T
P

 H
e

a
d
e
rs

 Use the X-Frame-Options header

Use the X-XSS-Protection header

Use HTTP Strict Transport Security

Use the Content-Security-Policy header

C
o
n
fi
g
u
ra

ti
o

n
 M

a
n
a

g
e
m

e
n
t

Protect the administrative interfaces

Disable directory listing

Disable dangerous HTTP methods

Remove system default accounts

Remove unused files

Protect from HTTP Verb Tampering

Avoid use of private embedded data in HTML code

Correctly configure extensions handling

Use components without know vulnerabilities

